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Abstract

We propose a multiplicative component model for intraday volatility. The model consists

of a seasonality factor, as well as a semiparametric and parametric component. The

former captures the well-documented intraday seasonality of volatility, while the latter

two account for the impact of the state of the limit order book, utilizing an additive

structure, and fluctuations around this state by means of a unit GARCH specification.

The model is estimated by a simple and easy-to-implement approach, consisting of

across-day-averaging, smooth-backfitting and QML steps. We derive the asymptotic

properties of the three component estimators. Further, our empirical application

based on high-frequency data for NASDAQ equities investigates non-linearities in

the relationship between the limit order book and subsequent return volatility and

underlines the usefulness of including order book variables for out-of-sample forecasting

performance.

Keywords: intraday volatility, GARCH, smooth backfitting, additive models, limit

order book.

JEL classification: C14, C22, C53 , C58.

1 Introduction

This paper proposes a new semiparametric model that accounts for the impact of economic

covariates on the conditional volatility of intraday returns. Of particular interest are those
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covariates that capture the state of the limit order book (LOB), which collects outstanding

limit orders for a given asset with a limit order being an order to buy or sell a given number of

shares at a pre-specified or better price. Several studies in empirical market microstructure

suggest that especially the LOB depth, that is, the cumulative size of outstanding orders

available at a given price level, plays a major role in this context. For example, Ahn et al.

(2001) discover that increased depth is followed by lower return volatility. The findings of

Coppejans et al. (2001) suggest that these volatility reductions might be due to a rise in the

unexpected part of LOB depth. Further, Pascual and Veredas (2010) find that the effects of

higher depth depend on whether the latter is available at or behind the best prices in the

book, being positive in the former case and negative in the latter. More recently, Valenzuela

et al. (2015) argue that it is the relative depth available at the different levels of the LOB

which drives subsequent volatility.

Predictions of asset return volatility over short intraday horizons are crucial for mani-

fold applications in financial practice. These include the development of order placement

strategies, where the future volatility level is an important determinant when selecting

optimal order types, the construction of intraday Value-at-Risk measures for trading desks,

as well as the implementation of volatility circuit breakers by exchange operators. At the

above intraday frequencies, volatility exhibits two stylised facts. First, a strong persistence,

analogous to the dynamic properties of low-frequency, i.e. daily or monthly returns, typically

captured by traditional GARCH models (Bollerslev, 1986; Engle, 1982). Second, a pro-

nounced seasonality, implying that fitting the latter models to returns sampled at different

intraday frequencies yields estimates that are inconsistent with the temporal aggregation

results by Drost and Nijman (1993). These features gave rise to the framework proposed

in Andersen and Bollerslev (1997, 1998), decomposing volatility multiplicatively into a

seasonal factor and a GARCH component.

The above microstructure results motivate the incorporation of LOB covariates into the

aforementioned GARCH-type models for intraday volatility. An important complication,

however, is the fact that modern game-theoretical models for LOBs, such as the seminal frame-

work by Rosu (2009), do not suggest specific functional forms for the relationship between

depth and subsequent (conditional) return volatility. This problem makes a semiparametric

approach necessary given that a pure nonparametric treatment would be infeasible when

including several LOB characteristics in the model. A seemingly straightforward solution is

to include a non- or semiparametric component accounting for the impact of the LOB state

into the GARCH dynamics directly, resulting in an additive GARCH-X-type model. From

a practical viewpoint, however, such a strategy is less attractive since estimation would

have to proceed similarly to the approach proposed by Linton and Mammen (2005) for
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their semiparametric ARCH(∞) framework, which would be numerically unstable in a

setting with possibly many covariates and vast high-frequency datasets. In this context, a

multiplicative component structure offers a powerful, but parsimonious and computationally

attractive, alternative. The idea is to augment the seasonality factor and GARCH dynamics

multiplicatively by a semiparametric additive component that accounts for the impact of

LOB covariates on the conditional volatility of intraday returns.

Hence, our main contributions can be summarised as follows. First, we propose a

model for intraday volatility, which consists of three components with each one capturing a

particular feature of the process in a parsimonious way. A seasonality factor, accounting for

the intraday periodicity of volatility, a semiparametric additive component, capturing, e.g.,

the effect of the LOB through possibly many covariates, as well as unit-GARCH dynamics,

describing fluctuations around the aforementioned previous factors and thus accounting for

remaining persistence in volatility. The three components are easy to estimate by means of

simple across-day averaging of squared returns, the smooth backfitting algorithm proposed

by Mammen et al. (1999) and quasi-maximum likelihood, respectively. Second, we derive

the asymptotic theory including rates and asymptotic normality for all component estimators.

In particular, we identify the contributions of the (pre-)estimators of the seasonality and

semiparametric component to the asymptotic variance of the GARCH parameter estimators

on the final step. In an empirical study, we apply our methodology to high-frequency

data for NASDAQ blue chips. Our findings suggest that the relationship between depth

and subsequent (conditional) return volatility might be highly non-linear, underlining the

importance of a semiparametric approach. Further, we conduct an out-of-sample forecasting

exercise, which shows that our method significantly outperforms all benchmarks.

The proposed framework adds to the recent literature on multiplicative component

GARCH models initiated by the spline-GARCH framework by Engle and Rangel (2008).

The latter extends GARCH dynamics for, e.g., daily returns in a multiplicative way by

a long-run trend component capturing the business cycle, resulting in a possibly non-

stationary volatility model with smoothly varying unconditional variance. This approach

is, e.g., refined by Hafner and Linton (2010) who estimate the long-run trend component

by kernel methods instead of splines, which allows them to derive an asymptotic theory

in a general setting. More recently, Han and Kristensen (2015) replace the deterministic

trend by a single, possibly non-stationary covariate, yielding a semiparametric multiplicative

GARCH-X. Several covariates are allowed in GARCH-MIDAS models as introduced by Engle

et al. (2013) and treated theoretically in Wang and Ghysels (2015). In these models,

the long-run component is driven by many lags of realised volatility estimates or various

economic covariates (see, e.g., Conrad and Loch, 2015). Importantly, however, smoothness

3



is ensured by imposing a parametric weighting scheme on the lag structure. Accordingly,

the incorporation of a multitude of covariates into the multiplicative framework through a

semiparametric component is a novelty in this field.

Further, our paper extends the studies on intraday GARCH models, which modify the

seminal approach by Andersen and Bollerslev (1997, 1998) in several directions. Whereas

in the latter framework, volatility dynamics are driven by a single intradaily or re-scaled

daily GARCH component in addition to the seasonality factor, Engle and Sokalska (2012)

allow for a daily component and dedicated intraday GARCH dynamics. Taylor and Xu

(1997) modify the GARCH component, extending it by both lagged implied and realised

volatility measures. Finally, Giot (2005) incorporates a set of LOB-related variables into the

GARCH equation parametrically. However, none of the aforementioned studies captures the

relationship between the LOB and conditional volatility in a flexible way without imposing

(too much) functional form.

Finally, our results complement the literature on smooth backfitting of additive models.

The general estimation idea put forward by Mammen et al. (1999) and its asymptotic

theory have been adapted to various settings, e.g., dynamic models for realised variance

estimates (Fengler et al., 2015). A framework related to ours is covered in Vogt and Walsh

(2012) who study the estimation of semiparametric additive models for time series including

seasonality and trend. Unlike our setting, though, the different components are combined

in a purely additive fashion. The asymptotic theory presented in our study builds on

the results of Mammen et al. (1999) and extends them crucially by providing rates and

asymptotic normality of the smooth backfitting estimator in a setting with the semiparametric

additive structure being part of a multiplicative model, subject to a pre-estimated seasonality

factor and including serially dependent regression errors. In particular, the multiplicative

framework does not allow for a simple application and/or modification of the results from

an additive setting, but requires an independent treatment to account for novel effects.

The remainder of the paper is structured as follows. Section 2 introduces the proposed

model, discusses the estimators of the various components, provides their asymptotic

properties and outlines details of the implementation. In Section 3, we present an empirical

application to NASDAQ data. Finally, Section 4 concludes. All proofs are deferred to

Appendix A.
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2 Semiparametric Estimation of Intraday Volatility

2.1 Modelling Framework

We consider D trading days and sample prices on a regular grid of N points per day. Let rt

denote the resulting i-th centred intraday log-return on day d, such that t := (d − 1)N + i

with i = 1, . . . , N and d = 1, . . . , D. We assume the multiplicative component model

rt =
p

st gt vt ηt , t = 1, . . . , T, T := N D. (1)

Here, st captures the well-known intraday seasonality of volatility (see, e.g., Andersen and

Bollerslev, 1997, 1998). Accordingly, it is periodic with period N , satisfying st = st+kN ,

k ∈ N.

gt := g(x t−1) accounts for the impact of the state of the LOB observed at the beginning

of the t-th return spell, which is subsumed in the vector x t−1 :=
�

x (1)t−1, . . . , x (J)t−1

�T
. Thus,

x t−1 can contain depths for various levels of the LOB. The fact that the latter are observed

at the beginning of the given spell prevents possible endogeneity issues. For this component,

we assume the semiparametric additive specification

g(x t−1) = 1+
J
∑

j=1

g( j)
�

x ( j)t−1

�

, t = 1, . . . , T, (2)

where setting the intercept to one is necessary for the seasonality component st to be

identified. Likewise, the unknown functions g( j), j = 1, . . . , J , are identified only up to an

additive constant. Hence, we impose the identifying restrictions

∫

S j

g( j)(u) p( j)(u) du= 0, j = 1, . . . J , (3)

where p( j) denotes the marginal density and S j the support of covariate j. As we discuss

in more detail in Section 2.3, we require the covariates to have compact support. To keep

notation straightforward, in the following we assume that S j = [0, 1], j = 1, . . . , J .

vt represents fluctuations of intraday volatility around the level set by the seasonality

component and the LOB. It is specified in terms of a unit GARCH process, i.e.

vt = 1−α− β +αu2
t−1 + β vt−1, ut := rt/

p

st gt , (4)

where α ≥ 0, β ≥ 0, and α+ β < 1. As in the case of gt , the unit intercept ensures that

the seasonality component is identified and implies that the process {vt} mean-reverts to
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an unconditional mean of one. Note that, in general, ut = ut(g, st) and vt = vt(θ , g,SN ),

where θ := (α,β)′, θ ∈ Θ with Θ to be specified below, and SN := (s1, . . . , sN )
′. The

basic specification in (4) could be extended to allow for richer dynamics, e.g., allowing for

leverage effects as in the asymmetric GARCH model by Glosten et al. (1993). However,

we stick to this simple alternative to allow for a clear and accessible presentation of the

resulting asymptotic theory below.

{ηt} is a sequence of i.i.d. disturbances with E
�

η2
t |Ht−1

�

= 1, whereHt is the sigma

algebra generated by {(rt , x t)}, i.e. Ht := σ(rt , x t , . . . , r−∞, x−∞). Summarising the

above assumptions on st , gt and vt , while additionally supposing that E
�

vt |H
(x)
t−1

�

= 1,

with H (x)
t := σ(x t , . . . , x−∞), it immediately follows that the expected squared return

conditional on past observations of the covariates satisfies E
�

r2
t |H

(x)
t−1

�

= st , t = 1, . . . , T ,

implying that the general level of volatility is ultimately determined by the seasonality

component.

Further and more detailed technical assumptions on the four components in (1) are

discussed in Section 2.3.

2.2 Estimation

We propose to estimate the components in (1) in three steps. In an initial step, we estimate

the seasonality component st . Subsequently, we estimate the additive functions g( j), j =

1, . . . , J , driving gt , and the parameter vector θ of the GARCH component vt .

The pre-step yielding estimates of the seasonality component exploits the periodic

structure of the latter. Accordingly, we compute across-day sample means of squared returns

for each intraday grid point as

ŝt = ŝi =
1
D

D
∑

k=1

r2
(k−1)N+i , i = 1, . . . , N , (5)

where ŝt+kN = ŝt , k ∈ N. This simple method can be considered as a special case with known

period N of the approach proposed by Vogt and Linton (2014) and was employed in the

context of the deseasonalisation of intraday returns, e.g., in Engle and Sokalska (2012).1

For the estimation of the remaining two components, we consider (estimated) desea-

sonalised returns ẑt := rt/
p

ŝt . The latter are used as inputs for an estimation approach,

which consists of the following two additional steps:

1Vogt and Linton (2014) additionally account for a smooth trend component.
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1. We estimate the semiparametric additive model

ẑ2
t = 1+

J
∑

j=1

g( j)
�

x ( j)t−1

�

+ ε̃t , ε̃t := gt

�

st

ŝt
vt η

2
t − 1

�

, (6)

by smooth backfitting. Based on the estimated additive functions ĝ( j), j = 1, . . . , J ,

we obtain { ĝt}
T
t=1 according to ĝt := 1+

∑J
j=1 ĝ( j)

�

x ( j)t−1

�

. The errors {ε̃t} as well

as their counterparts based on the true seasonality component, εt := gt

�

vt η
2
t − 1

�

,

t = 1, . . . , T , are not serially independent. As is discussed below, this property crucially

affects the choice of a suitable estimator for the additive model (6).

2. We maximize the Gaussian quasi log-likelihood function of {ut}
T
t=1 evaluated at the

estimates
�

û∗t
	T

t=1, where û∗t := ẑt/ ĝt = ut( ĝ, ŝt), t = 1, . . . , T , i.e.

max
θ∈Θ
LT

�

θ , ĝ, ŜN

�

, LT (θ , g,SN ) :=
1
T

T
∑

t=1

lt(θ , g,SN ) , (7)

lt(θ , g,SN ) := − ln vt(θ , g,SN )−
ut(g, st)

2

vt(θ , g,SN )
,

which yields the parameter estimates θ̂ .

We refrain from extending the above estimation approach by repeating steps one and two,

while starting from the “refined” series
�

ẑ2
t /v̂t

	T
t=1, where v̂t := vt

�

θ̂ , ĝ, ŜN

�

, t = 1, . . . , T .

The asymptotic theory for the resulting additional estimation steps, which would be in

line with the multi-step estimation approaches proposed in Hafner and Linton (2010) and

Han and Kristensen (2015), could be derived analogously to the proofs of the results in

Section 2.3. However, results not reported here show that, in the given setting involving

pre-estimation of seasonality and smooth backfitting, the aforementioned modifications turn

out to yield numerically somewhat unstable behaviour and a worse out-of-sample prediction

performance in the empirical application in Section 3.2

We estimate g1, . . . , gJ in (6) by smooth backfitting with the estimators minimising the

smoothed least-squares criterion

∫ 1

0

T
∑

t=1

�

ẑ2
t − 1−

J
∑

j=1

g( j)
�

x ( j)
�

�2
J
∏

j=1

Kh j

�

x ( j), x ( j)t−1

�

d x (1) . . . d x (J), (8)

2These results are available from the author upon request.
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under the constraint

∫ 1

0

g( j)(u) p̂( j)(u) du= 0, j = 1, . . . , J . (9)

Here, p̂( j) is the kernel estimator of the density of the j-th covariate, i.e.

p̂( j)
�

x ( j)
�

=
1
T

T
∑

t=1

Kh j

�

x ( j), x ( j)t−1

�

, j = 1, . . . , J , (10)

while Kh j
(u, v) denotes a modified kernel defined as

Kh j
(u, v) :=

Kh j
(u− v)

∫ 1
0 Kh j

(z − v) dz
, j = 1, . . . , J , (11)

with Kh(u− v) := h−1K
�

h−1 (u− v)
�

, where K integrates to one on its support. The modifi-

cation of the kernel in (11) ensures that the estimate p̂( j)
�

x ( j)
�

integrates to one over the

compact support. The latter property is required for the asymptotic theory of the smooth

backfitting estimator. See Section 2.3 for details. Importantly, Mammen et al. (1999) show

that the minimisation of the criterion (8) is tantamount to a projection of the data, i.e. in

our case ẑ2
t , t = 1, . . . , T , onto the space of additive functions

∑J
j=1 g( j)

�

x ( j)
�

with respect

to a particular semi-norm. Thus, if the additive model is not correct, smooth backfitting

estimates the best additive fit to the non-additive model.

Fixing the value of x ( j) and minimising the criterion (8) with respect to the estimator

ĝ( j)
�

x ( j)
�

after some simplifications yields the solution

ĝ( j)
�

x ( j)
�

= ĝ( j)NW

�

x ( j)
�

− 1−
∑

k 6= j

∫ 1

0

p̂( j,k)
�

x ( j), x (k)
�

p̂( j)
�

x ( j)
� ĝ(k)

�

x (k)
�

d x (k), (12)

where ĝ( j)NW

�

x ( j)
�

is the univariate Nadaraya-Watson estimator of the component function

g( j)
�

x ( j)
�

and p̂( j,k)
�

x ( j), x (k)
�

denotes the kernel estimator of the joint density of the j-th

and k-th covariate, p( j,k), such that

ĝ( j)NW

�

x ( j)
�

=

� T
∑

t=1

Kh j

�

x ( j), x ( j)t−1

�

�−1 T
∑

t=1

Kh j

�

x ( j), x ( j)t−1

�

ẑ2
t , (13)

p̂( j,k)
�

x ( j), x (k)
�

=
1
T

T
∑

t=1

Kh j

�

x ( j), x ( j)t−1

�

Khk

�

x (k), x (k)t−1

�

. (14)
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Condition (12) gives rise to an iterative algorithm, allowing for a straightforward imple-

mentation of the smooth backfitting estimator. We refer to Mammen et al. (1999) for

details.

Possible alternatives to the above smooth backfitting approach would be either “tradi-

tional” backfitting (see Buja et al., 1989; Hastie and Tibshirani, 1990) or marginal integration

(see Linton and Nielsen, 1995; Newey, 1994; Tjostheim and Auestad, 1994). The major

shortcoming of the backfitting estimator in the given context is that its asymptotic analysis

requires the regression errors of the underlying semiparametric additive model to be inde-

pendent (see Opsomer, 2000; Opsomer and Ruppert, 1997). As was discussed above, this

assumption is not satisfied in framework (6). Moreover, stronger assumptions on the joint

density of the covariates are needed than for the study of the smooth backfitting estimator.

Finally, Nielsen and Sperlich (2005) illustrate by simulations that the latter, in comparison

to the classical backfitting algorithm, is more robust to degenerated designs and a large

number of additive components. This finding can be explained by the fact that the iteration

equation resulting from (12) is a smoothed, and hence stabilised, version of its “traditional”

backfitting counterpart. Marginal integration, on the other hand, suffers from the fact that

it does not generally achieve optimal rates. To improve efficiency, two-stage estimation

methods as proposed in Linton (1997) and Fan et al. (1998) are required.

2.3 Asymptotic Theory

We begin by summarising the technical assumptions for the components in (1). Subsequently,

we present asymptotic results for the estimators of the seasonality component, the functions

inside the semiparametric component and the parameters of the GARCH component.

We impose the following conditions on the seasonality component, component functions

of the additive component, as well as the kernels employed to estimate the latter:

Assumption 1

(a) The kernel K is bounded with compact support (e.g. [−C , C]) and satisfies

|K(u)− K(w)| ≤ C1 |u− v| for some constant C1 <∞ and all x , y ∈ [−C , C].

(b) X t has compact support (e.g. [0,1]J). The density p of X t and the densities p(0,l) of

(X t , X t+l), l = 1, 2, . . ., are uniformly bounded. p is bounded away from zero on [0, 1]J .

The first partial derivatives of the density p exist and are continuous.

(c) The second partial derivatives of the functions g( j), j = 1, . . . , J, exist and are Lipschitz

continuous.
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(d) For some γ > 16/3, C1 < ∞ and l̄ ∈ N, E[|ηt |γ|X t−1] < C1 and

E[|ηtηt+l ||X t−1, X t−1+l]< C1 ∀ l > l̄ .

(e) For some ρ > 2, E
�

X 2ρ
t

�

<∞.

(f) The conditional densities pX t |Zt
and pX t ,X t+l |Zt ,Zt+l

, l = 1,2, . . ., exist and are bounded

from above.

(g) {(ηt , X t)} is strictly stationary and strongly mixing with mixing coefficients α(i)≤ C1mi

for some m< 1.

(h) st is bounded away from zero for t = 1, . . . , N.

(i) g(x) is bounded away from zero uniformly in x ∈ [0, 1]J .

Assumptions 1 are standard and widely in line with Mammen et al. (1999). The compact

support in part (b) is necessary to obtain uniform expansions of the so-called “stochastic”

and “bias” part of the smooth backfitting estimators, respectively. If the covariates are strictly

stationary as in part (g), this type of assumption is not restrictive. In empirical applications,

the lower and upper bound of the support can be set equal, e.g., to the sample minimum and

maximum of the given covariate. The exponential mixing rate in part (g) is not necessary

and mainly chosen for notational convenience. Somewhat slower and more general rates

are possible at the cost of more tedious notation (see, e.g., Mammen et al., 1999) as well as

more restrictive moment assumptions for the GARCH component below.

The next set of assumptions ensures consistency and asymptotic normality of the GARCH

parameter estimators θ̂ , where we denote the true parameter vector by θ0 := (α0,β0)
′:

Assumption 2

(a) θ0 ∈ Θ with Θ being compact.

(b) α+ β < 1 for each θ ∈ Θ.

(c) η2
t has a non-degenerate distribution with E

�

η2
t |Ht−1

�

= 1 and E[ηt |Ht−1] = 0.

(d) If β0 > 0, α0 > 0.

(e) E
�

�

β0 +α0η
2
t

�5�
< 1 and E

�

�

β0 +α0η
2
t

�2|H (x , j)
�

< 1, where H (x , j) is the sigma

algebra generated by
¦

x ( j)∞, . . . , x ( j)−∞
©

, j = 1, . . . , J.

(f) θ0 is in the interior of Θ.
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Parts (a)-(d) of Assumption 2 ensure consistency, while parts (e) and (f) are additionally

required for asymptotic normality. These assumptions roughly follow those made in Francq

and Zakoian (2004). Assumption 2(b) guarantees strict stationarity and strong mixing

with exponential rate of vt . Our formulation is somewhat stronger than the corresponding

Assumption (A2) in Francq and Zakoian (2004), but ensures that the true intercept is strictly

positive and that vt is bounded away from zero uniformly in θ ∈ Θ. Assumption 2(e)

is additionally introduced and, by an adaptation of Corollary 6 from Carrasco and Chen

(2002), guarantees that E
�

u10
t

�

<∞ and E
�

u4
t |H

(x , j)
�

<∞, j = 1, . . . , J , respectively.

Hence, Assumption 2(e) is clearly stronger than its counterpart in the parametric GARCH

case, requiring only the existence of fourth unconditional moments of the GARCH distur-

bances (Assumption (A6) in Francq and Zakoian (2004)). In the given semiparametric and

multiplicative framework, however, this strengthening of the assumptions is necessary to

bound certain terms in the contribution of the smooth backfitting estimators in (6) to the

asymptotic variance of the GARCH parameter estimator. More precisely, to account for the

variance part of the smooth backfitting estimator, we only need that E
�

u8+δ
t

�

<∞, δ > 0,

but as is well-known, the computation of odd-order unconditional moments implied by a

GARCH process is extremely difficult (see, e.g., Francq and Zakoian, 2010, Section 2.4).3

Finally, note that we cannot loosen Assumption 2(e) any further as this would have to be

compensated by an even faster decay rate of the mixing coefficients, which is already taken

to be exponential according to Assumption 1(g).4

Our first basic result provides asymptotic normality for the estimator of the seasonality

component st in (5).

Theorem 1. Let Assumptions 1(d)-(h) and 2(b) be fulfilled. Then

p
T (ŝt − st)

d
−→N

 

0, N s2
t

∞
∑

j=−∞
Cov

�

qt , qt− j

�

!

, t = 1, . . . , N , (15)

where qt := z2
t − 1.

The straightforward proof of Theorem 1 proceeds along standard lines. See Appendix A

for details. Note that due the finite number of indices across which st may differ, i.e.

t = 1, . . . , N , Theorem 1 directly implies that supt∈{1,...,T} |ŝt − st |= Op

�

T−1/2
�

. Further, for

the purpose of inference in empirical applications, the asymptotic variance in (15) could be

estimated by applying a standard long-run variance estimator to {q̂t}.

3Trivially, odd-order moments will be zero when they exist if we assume that the distribution of ηt is symmetric.
4More precisely, Assumption 2(e) follows from an application of Davydov’s lemma in order to bound the absolute
(auto-)covariances of a strong mixing process (see, e.g., Hall and Heyde, 1980, Corollary A2). See Appendix A
for details.
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The next theorem provides uniform consistency and asymptotic normality of the smooth

backfitting estimators ĝ( j), j = 1, . . . , J . For ease of notation, we set h= h1 = . . .= hJ .

Theorem 2. Let Assumptions 1 and 2(b) be fulfilled. Further, assume that h� T−(1/4+ε) for

some ε > 0. Then

sup
x ( j)∈[0,1]

�

� ĝ( j)
�

x ( j)
�

− g( j)
�

x ( j)
��

�= Op(h) , j = 1, . . . , J . (16)

In addition, for x ( j) ∈ (0, 1),

p

Th
�

ĝ( j)
�

x ( j)
�

− g( j)
�

x ( j)
�� d
−→N

 

0,κ2

σ2
j

�

x ( j)
�

p( j)
�

x ( j)
�

!

, j = 1, . . . , J , (17)

where κ2 :=
∫

K(u)2du and σ2
z, j

�

x ( j)
�

:= V
�

z2
t − g(X ) |X ( j) = x ( j)

�

.

The proof of Theorem 2 consists of two main elements. First, the pre-estimation of the

seasonality component needs to be accounted for. The corresponding estimation error is

included in the bias part of the smooth backfitting estimator. Then, a uniform expansion

for the latter needs to be formulated, which crucially exploits the periodic nature of the

seasonality component and its estimator. Second, a uniform expansion for the stochastic

part of the smooth backfitting estimator originally proposed in Mammen and Park (2005)

has to be extended to allow for strongly mixing data. Details are provided in Appendix A.

Importantly, the bandwidth of order T−(1/4+ε) implies that we undersmooth compared

to the MSE-optimal choice for the univariate estimators ĝ( j)NW , i.e. h = O
�

T−1/5
�

used in

Mammen et al. (1999). As we discuss below, this modification is required for the asymptotic

normality of the GARCH parameter estimator θ̂ in the following step. Obviously, if we are

merely interested in the component functions g( j), j = 1, . . . , J , and point estimates of θ ,

MSE-optimal smoothing can be retained. The latter additionally introduces an asymptotic

bias term of order h2, representing the bias leading term of the J -dimensional Nadaraya-

Watson estimator projected on the space of additive functions. See Mammen et al. (1999)

for details.

The final theorems in this section grant consistency and asymptotic normality to the

GARCH parameter estimator θ̂ .

Theorem 3. Let Assumption 1 and Assumption 2(a)-(d) be fulfilled. Further, assume that

h� T−(1/4+ε) for some ε > 0. Then θ̂ → θ0 almost surely.

12



Theorem 4. Let Assumption 1 and Assumption 2 be fulfilled. Further, assume that h �

T−(1/4+ε) for some ε > 0. Then

p
T
�

θ̂ − θ0

� d
−→N

�

0,H (θ0, g,SN )
−1Σ(θ0, g,SN )H (θ0, g,SN )

−1

�

,

where H (θ0, g,SN ) := E
�

∂ 2 lt(θ ,g,SN )
∂ θ∂ θ T |θ=θ0

�

, Σ(θ0, g,SN ) :=
∑∞

j=−∞Cov
�

yt,T , yt− j,T

�

and

yt,T = yt,T (θ0, g,SN ) is defined in (54) in Appendix A.

The proofs of both theorems can be found in Appendix A. For Theorem 3, the approxi-

mation error in the likelihood is decomposed into the errors due to the pre-estimation of

the seasonality and semiparametric component, respectively, while using the consistency

of the two latter component estimators, as well as standard results from Francq and Za-

koian (2004). As in Theorem 2, the bandwidth could also be chosen in the (univariate)

MSE-optimal way, which is not the case for Theorem 4. The reason is that the proof of

the latter is based on considering the score evaluated at the true parameter vector θ0 as

a functional in the semiparametric component g. For this functional evaluated at the pre-

estimate ĝ, we conduct a first-order expansion around the true semiparametric component

g. The undersmoothing condition is then necessary to ensure that the corresponding re-

mainder term, which is of order Op

�

h2
�

becomes op

�

T−1/2
�

. Importantly, the definition

of yt,T , t = 1, . . . , T , in (54) in Appendix A demonstrates that the asymptotic variance

of the GARCH parameter estimator is affected by the pilot estimates of the seasonality

and semiparametric component, implying that the estimator does not possess an oracle

property in the general framework considered. That is, in addition to the usual GARCH(1, 1)

score in the Gaussian QML setting, which would drive the asymptotic variance given an

oracle result, we can identify the contributions of the stochastic and bias part of the smooth

backfitting estimators in (6) as well as the asymptotic variance of the seasonality component

estimator (5). Accordingly, relying on standard asymptotic results for the QML estimator of

GARCH(1, 1) models, e.g., by employing Bollerslev and Wooldridge (1992) standard errors,

will generally lead to wrong inference in practice.

The rather complicated structure of the asymptotic variance in Theorem 4 has further

implications for the ability to conduct inference in empirical applications. Here, in particular,

the presence of weighting functions following from a uniform expansion of the stochastic

part of the smooth backfitting estimators makes the derivation of a consistent estimator

of Σ(θ0, g,SN ), i.e. the long-run variance of
�

yt,T

	

, challenging in general. Thus, a more

viable strategy to obtain confidence intervals in practice is to implement a valid re-sampling

scheme. A simple algorithm is proposed in Section 2.4 below.
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2.4 Feasible Implementation

To implement the component estimators introduced in Section 2.2 and conduct valid

inference in practice, two remaining open questions need to be addressed. First, the

choice of the bandwidths h j for the smooth backfitting estimators ĝ( j), j = 1, . . . , J , in (6).

Second, a suitable bootstrap scheme for the GARCH parameters θ estimated in (7).

To determine the bandwiths h j , j = 1, . . . , J , in a data-driven way, we follow an approach

proposed by Mammen and Park (2005). The later relies on the minimisation of a penalised

sum of squares (PLS) criterion based on the smooth backfitting residuals with the penalty

preventing in-sample over-fitting caused by “too small” bandwidths. Mammen and Park

(2005) show that the resulting bandwidths are asymptotically equivalent to those minimising

the average weighted squared error (up to an additive constant).5

In our framework, we need to modify the above method in two ways. First, we have

to ensure that the estimates of the semiparametric component, ĝt , t = 1, . . . , T , in (6) are

strictly positive. Second, we need to satisfy the undersmoothing condition h = O
�

T−(1/4+ε)
�

,

ε > 0, in settings where we are interested in the asymptotic distribution of the GARCH

parameter estimator θ̂ according to Theorem 4. This is achieved by introducing an additional

penalty for negative estimates and employing undersmoothing bandwidths when checking

for the latter. Thus modified, the bandwidth selection problem becomes

ĥ1, . . . , ĥJ = arg min
h1,...,hJ

RSS(h1, . . . , hJ )







1+
2K(0)

T





J
∑

j=1

1
h j



+
T
∑

t=1

1l { ĝ∗t≤0}∆







, (18)

where RSS(h1, . . . , hJ ) :=
∑T

t=1

�

ẑ2
t − 1−

∑J
j=1 ĝ( j)

�

x ( j)t−1

��2
/T , the estimates ĝ∗t , t =

1, . . . , T , are based on the undersmoothing bandwidths h∗j = h j T
−(1/20+ε) with ε “small”,

j = 1, . . . , J , while ∆ denotes a “large” positive constant. Finally, the bandwidths resulting

from (18) are deflated according to ĥ∗j = ĥ j T
−(1/20+ε), j = 1, . . . , J .

To reduce the computational burden and, in particular, allow for the use in a rolling-

window forecasting application (see below), we implement the above procedure using a

slightly modified version of the algorithm proposed in Mammen and Park (2005). The steps

are as follows:

Step 0 Initialise h1, . . . , hJ to the least-squares cross validation bandwidths for the univariate

Nadaraya-Watson estimators ĝ( j)NW , j = 1, . . . , J , in (13).

5Mammen and Park (2005) also propose plug-in procedures for bandwidth choice. They argue, however, that
these are sub-optimal whenever one is interested in maximising the overall fit of the additive model instead of
specific component functions.
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Step 1 Compute the above modified PLS criterion over a grid for the bandwidth h j, j =

1, . . . , J , while holding the other bandwidths h1, . . . h j−1, h j+1, . . . , hJ constant.

Step 2 Replace the starting value for h j by the corresponding minimising grid point h̃ j,

j = 1, . . . , J .

Step 3 Repeat steps 1 and 2 starting from the bandwidths h̃1, . . . , h̃J . Iterate in that way until

a pre-specified convergence criterion is met.

In Step 1, we consider an equidistant grid of 50 points around the initial cross-validation

bandwidths.

As was pointed out in Section 2.3, inference associated with the GARCH parameter

estimator θ̂ from (7) requires an appropriate bootstrap approach. The predominant method

in a GARCH framework is the block bootstrap for the GARCH (quasi-) likelihood proposed by

Goncalves and White (2004) and further refined by Corradi and Iglesias (2008). However,

the latter method is based on re-sampling likelihood contributions and thus appears less

suitable for our setting, in which the bootstrap is supposed to account for the impact of

the pre-estimation of the seasonality and semiparametric component on the variability of

the GARCH parameter estimator. Hence, we instead take a practical stance and implement

a residual bootstrap in the spirit of Pascual et al. (2006) to obtain percentile confidence

intervals for θ .6 For that purpose, we condition on the covariate sample {x t}
T
t=1. A similar

type of residual bootstrap conditional on the covariates has been applied in the context

of semiparametric additive models, e.g., by Fan and Jiang (2005). To summarise, our

re-sampling algorithm consists of the following steps:

Step 0 Fix the bandwidths at their values determined from the data according to (18), i.e.

ĥ∗j , j = 1, . . . , J .

Step 1 Obtain a sample
�

η∗t
	T

t=1 by re-sampling with replacement from the empirical distri-

bution of the centred residuals η̂t − T−1
∑T

t=1 η̂t , where η̂t = rt/
p

ŝt ĝt v̂t and with

ŝt , ĝt as well as v̂t , t = 1, . . . , T , being the estimates of the three model components

based on the original data.

Step 2 Obtain the sample
�

u∗t
	T

t=1 from the recursion

v∗t = 1− α̂− β̂ + α̂u∗2t−1 + β̂ v∗t−1, u∗t :=
Æ

v∗t η
∗
t , (19)

6A residual bootstrap has also been considered in the context of GARCH specification testing by Hidalgo and
Zaffaroni (2007).
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where α̂ and β̂ are parameter estimates based on the original data. From this, generate

the (conditional) bootstrap sample
��

r∗t , x t

�	T
t=1, where r∗t = u∗t

p

ŝt ĝt , t = 1, . . . , T .

Step 3 Use
��

r∗t , x t

�	T
t=1 to compute the GARCH parameter estimates θ̂ ∗ following the esti-

mation steps (5), (6) and (7).

Step 4 Repeat steps 1–3 B times and obtain the limits of the desired percentile intervals for

α and β as the corresponding percentiles of
�

α̂∗b

	B
b=1 and

�

β̂∗b

	B

b=1, respectively.

It is well-known that percentile intervals may exhibit a worse coverage accuracy compared

to percentile t-intervals for small sample sizes (see, e.g., Inoue and Kilian, 2002). However,

the latter issue should not be relevant in the given high-frequency setting with about 8000

observations. Finally, note that establishing the asymptotic validity of the above bootstrap

approach in the given framework is clearly beyond the scope of this paper and deserves a

study on its own. Hence, we leave it for future research.

3 Empirical Application

3.1 Data

We consider mid-prices and further LOB information for four of the most liquid stocks traded

on NASDAQ: Apple (AAPL), Google (GOOG), Facebook (FB) and Microsoft (MSFT). The

sample period is from January to May 2015. The LOB data is originally retrieved up to level

50 with the source being the LOBSTER database.7 The latter reconstructs the LOB from a

message stream, which is part of NASDAQ’s historical TotalView-ITCH data and contains

all limit order submissions, cancellations and executions on each trading day (see Huang

and Polak, 2011). A crucial advantage of the resulting datasets, e.g., compared to similar

ones sampled from the Trade and Quote (TAQ) database, is the fact that recording errors

are virtually non-existent, such that cleaning procedures, as e.g., proposed in Brownlees

and Gallo (2006) are not necessary.

We aggregate the original data, which is sampled in event time, i.e. whenever an

order event changes the book on the first 50 levels, to a regular frequency of five minutes

using previous-tick interpolation (e.g. Dacorogna et al., 2001). This choice of frequency is

consistent, e.g., with Andersen and Bollerslev (1997) and Andersen and Bollerslev (1998).

We compute mid-prices as Pt := (At + Bt)/2, t = 1, . . . , T , where At and Bt denote the

best ask and bid prices at the end of the t-th five-minute interval, respectively, and obtain

the corresponding log-returns. In order to prevent having to account for overnight effects,

7See https://lobsterdata.com/.
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we exclude overnight returns, which is common in the literature (see, e.g., Engle and

Sokalska, 2012). The resulting daily number of observations is N = 78. Finally, we centre

the log-returns by subtracting their sample means.

We measure the state of the LOB at the beginning of each return spell by the sum of bid

and ask depth at successive LOB levels relative to the total depth in the book, i.e.,

RDEPTH(l)t−1 :=
ADEPTH(l)t−1 + BDEPTH(l)t−1

∑Lmax
k=1

�

ADEPTH(k)t−1 + BDEPTH(k)t−1

� , l = 1, . . . , Lmax, t = 1, . . . , T, (20)

where ADEPTH(l)t−1 and BDEPTH(l)t−1 denote the ask and bid depth on LOB level l at the

beginning of the t-th spell, respectively, while Lmax is the maximum LOB level considered.

This strategy is motivated by the results in Valenzuela et al. (2015) who show that the

resulting relative depths have a considerable predictive power regarding subsequent in-

traday volatility and, in particular, outperform methods based on plain depths. A further

advantage of this approach is that it automatically normalises depths to the unit inter-

val and accounts for their seasonal pattern as documented, e.g., in Ahn et al. (2001).

Exemplarily, Figure 1 depicts medians of relative bid and ask depths up to level 50. In

all cases, the bid and ask depth appears to be concentrated roughly on the first 25 lev-

els. Hence, we set Lmax = 25 in order to keep the analysis parsimonious. Finally, we

account for the fact that, in particular on the first levels, depth data can be rather noisy,

e.g., due to “pinging” strategies for the detection of hidden depth (see, e.g., Hautsch and

Huang, 2012). Hence, we average relative depth over five levels, such that RDEPTH(1−5)
t−1 :=

1
5

∑5
l=1 RDEPTH(l)t−1 with RDEPTH(6−10)

t−1 , RDEPTH(11−15)
t−1 and RDEPTH(16−20)

t−1 defined analo-

gously for t = 1, . . . , T . Note that we skip the average relative depth for levels 21 to 25 in

order to mitigate possible multicollinearity issues. Hence, we consider the covariate vector

x t−1 =
�

RDEPTH(1−5)
t−1 , RDEPTH(6−10)

t−1 , RDEPTH(11−15)
t−1 , RDEPTH(16−20)

t−1

�T
, t = 1, . . . , T .

Table 1 reports some descriptive statistics for log returns as well as relative depths on

levels 1−5 and 16−20.8 The return distribution exhibits the well-known excess kurtosis in

all four cases, while it is left-skewed for AAPL and FB and slightly right-skewed for GOOG

and MSFT. Relative depth is concentrated on the first five levels as opposed to deeper in the

book. At the same time, however, depth variability does not overly depend on the LOB level.

Ljung-Box statistics for squared log returns and relative depths on levels 1 − 5 and

16− 20 are shown in Table 6 in Appendix B. In line with literature, we observe the typical

volatility clustering behaviour with the Ljung-Box statistics being highly significant across

8Descriptive statistics for relative depth on levels 6− 10 and 11− 15 have been omitted to conserve space, but
are available on request. The same holds for the Ljung-Box statistics in Table 6 in Appendix B discussed below.
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Figure 1: Medians of Relative Bid and Ask Depths. Solid (dashed) line: median relative ask (bid)

depth. Relative ask depth for level l: RADEPTH(l)t := ADEPTH(l)t
∑50

k=1 ADEPTH(k)t
, l = 1, . . . , 50, t = 1, . . . , T .

Relative bid depth defined analogously. Figure depicts medians computed over t = 1, . . . , T .
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Table 1: Descriptive Statistics. Log returns (LRET) reported in percentage points. DEP1−5 and
DEP16−20: average relative depth on levels 1 to 5 and 16 to 20, respectively. AVG: sample mean. SD:
standard deviation. P0.05: 0.05-percentile. Results for (average) relative depth on levels 6 to 10 and
11 to 15 omitted due to space constraints, but available upon request.

AAPL GOOG

LRET LRET2 DEP1−5 DEP16−20 LRET LRET2 DEP1−5 DEP16−20

AVG 0.000 0.017 0.044 0.023 0.000 0.013 0.042 0.026
SD 0.131 0.047 0.017 0.013 0.116 0.034 0.013 0.009
P0.05 -0.207 0.000 0.020 0.009 -0.183 0.000 0.024 0.014
P0.95 0.197 0.072 0.070 0.050 0.183 0.054 0.065 0.045
SKEW -0.441 0.016
KURT 8.431 7.364
#OBS 7854 7854 7854 7854 7854 7854 7854 7854

FB MSFT

LRET LRET2 DEP1−5 DEP16−20 LRET LRET2 DEP1−5 DEP16−20

AVG 0.000 0.019 0.049 0.032 0.000 0.013 0.069 0.027
SD 0.139 0.056 0.018 0.017 0.116 0.036 0.016 0.012
P0.05 -0.214 0.000 0.020 0.012 -0.189 0.000 0.042 0.014
P0.95 0.216 0.078 0.075 0.071 0.187 0.056 0.093 0.055
SKEW -0.235 0.065
KURT 9.536 8.112
#OBS 7854 7854 7854 7854 7854 7854 7854 7854
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all lags and stocks. The same is true for relative depths, while the relative persistence of

depth on levels 1− 5 vs. 16− 20 depends on the given asset. Relative depth is considerably

more persistent near the top of the book compared to the deeper levels for AAPL and MSFT,

while the opposite holds in the case of GOOG and FB. The sample autocorrelation functions

displayed in Figure 2 confirm the persistence of squared returns. Moreover, they indicate

the well-known seasonality patterns in volatility.

Finally, Table 7 in Appendix B reports the results of ADF tests for unit-roots in the relative

depth series. For all stocks and depth series, the null of a unit-root can be easily rejected at

all conventional levels. Accordingly, the assumption of a stationary covariate process made

in Section 2.3 appears to be reasonable in the given application scenario.

3.2 Intraday Volatility Dynamics and Order Book Depth

As the first part of the empirical study, we consider the entire sample. For that purpose, we

estimate our component model following the estimation steps (5), (6) and (7) in Section 2.2.

For the smooth backfitting estimators ĝ( j), j = 1, . . . , J , in (6), we set the “base kernel” K

to be the Epanechnikov kernel. The compact support of the latter is in line with our

Assumption 1(a).

We start the discussion of the empirical results with the estimates of the seasonality

component. The latter are depicted in Figure 3, indicating that the seasonality component

exhibits the L-shape that is typical for equities, thus confirming the results, e.g., in Engle

and Sokalska (2012). Accordingly, volatility is higher at the opening, lower around midday

and then increases somewhat before the close of trading.

We can proceed with the semiparametric component. Table 2 reports the bandwidths

for the smooth backfitting estimators that were obtained by the modified PLS approach

discussed in Section 2.4. Most importantly, all bandwidths have a comparable level of

magnitude, implying that none of the covariates is being “smoothed out”. Figures 4 and 5

display the resulting estimates of the component functions together with approximative

95% confidence intervals constructed following Theorem 2. The latter require estimates of

the variances σ2
z, j

�

x ( j)
�

, j = 1 . . . , J , which are obtained by a Nadaraya-Watson regression

of the squared backfitting residuals from (6) on x ( j) using least-squares cross-validation

bandwidths. To focus on the difference in terms of the impact on subsequent volatility

between depth near the top and deeper in the book, only the estimates corresponding to

relative depths on LOB levels 1− 5, ĝ1, and 16− 20, ĝ4, are reported.9

9The estimates corresponding to relative depths on levels 6−10, ĝ2, and 11−15, ĝ3, are available upon request.
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Figure 2: Sample Autocorrelation Functions of Squared Log Returns. Horizontal lines: limits of 95%
confidence intervals (∓1.96/

p
T).
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Figure 3: Estimates of Seasonality Component st
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Table 2: Bandwidths for SBF Estimator of Additive Component. Bandwidths determined by minimis-
ing modified PLS criterion (18).

AAPL GOOG FB MSFT

RDEPTH(1−5) 0.354 0.586 0.692 0.193
RDEPTH(6−10) 0.308 0.399 0.162 0.179
RDEPTH(11−15) 0.403 0.284 0.299 0.465
RDEPTH(16−20) 0.241 0.588 0.695 0.242

The main findings are as follows. First, the functional form is highly non-linear in all

cases but one. That is, only in the case of ĝ1 for AAPL, the confidence region associated

with the fit would allow for a linear relationship, underlining the importance of a flexible

semiparametric approach for uncovering the impact of relative order book depths on intraday

volatility. Second, for all four stocks, there is a pronounced difference between the shape of

ĝ1 and ĝ4, suggesting that the depth-volatility relationship crucially depends on the given

LOB level. E.g. for AAPL, increasing relative depth on levels 1− 5 has a positive effect on

subsequent volatility. However, the impact is significantly negative when analysing levels

16− 20 as ĝ4 first decreases sharply and flattens out eventually. This result is in line with,

e.g., Pascual and Veredas (2010) and might be explained by a reduction of the sizes of

less aggressive limit orders when an increase in volatility is expected. In the case of the

remaining three stocks, the relationships are more complex. ĝ1 is mostly convex, being

predominantly decreasing (increasing) for lower (higher) relative depths. Hence, the results

of Ahn et al. (2001) for depth at the top of the book can be confirmed only for smaller values.

Interestingly, in the case of GOOG and MSFT, ĝ4 is roughly inverted and thus concave. Up

to intermediate levels of relative depth, this finding is in line with Valenzuela et al. (2015)

and could be caused by market participants interpreting a concentration of depth deeper in

the book as an indication of mispricing, which in turn leads to price adjustments resulting

in a higher volatility.

Estimates of the parameters of the GARCH component are reported in Table 3. Un-

surprisingly, the parameter estimates are well in line with literature (see, e.g., Andersen

and Bollerslev, 1997). They translate into half-lives for a volatility shock from around 36

five-minute intervals, i.e. three hours, for GOOG to 73 intervals or roughly six hours for

MSFT. More interestingly, Table 3 also reports percentile confidence intervals computed

using the bootstrap algorithm introduced in Section 2.4 with B = 5000 as well as cor-

responding “naive” asymptotic confidence intervals based on Bollerslev and Wooldridge

(1992) standard errors. For all four stocks and both parameters, the percentile intervals are

markedly wider than their naive counterparts. This result underlines the importance of a
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ĝ(4
)  (x

(4
) )

(b) AAPL: RDEPTH(16−20)

−0.005

0.000

0.005

0.010

0.00 0.25 0.50 0.75 1.00
x(1)
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Figure 4: Estimates of Additive Component Functions g(1) and g(4) (AAPL & GOOG). Dashed lines:
approximative point-wise 95% confidence intervals according to Theorem 2. Estimates of variances
σ2

z, j

�

x ( j)
�

, j = 1 . . . , J , obtained by Nadaraya-Watson regression of squared backfitting residuals

from (6) on x ( j) using least-squares cross-validation bandwidths. Estimates of g(2) and g(3) available
upon request.
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Figure 5: Estimates of Additive Component Functions g(1) and g(4) (FB & MSFT). Dashed lines:
approximative point-wise 95% confidence intervals according to Theorem 2. Estimates of variances
σ2

z, j

�

x ( j)
�

, j = 1 . . . , J , obtained by Nadaraya-Watson regression of squared backfitting residuals

from (6) on x ( j) using least-squares cross-validation bandwidths. Estimates of g(2) and g(3) available
upon request.
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Table 3: Estimation Results for GARCH Component. CIb
L and CIb

U : lower and upper bound of
bootstrapped confidence interval with B = 5000. CIa

L and CIa
U : lower and upper bound of “naive”

asymptotic confidence interval based on Bollerslev and Wooldridge (1992) standard errors. ÓHL:
half-life in five-minute intervals.

AAPL GOOG FB MSFT

α β α β α β α β

Est. 0.067 0.919 0.044 0.937 0.049 0.935 0.042 0.948
CIb

L 0.054 0.902 0.033 0.916 0.037 0.920 0.033 0.936
CIb

U 0.082 0.935 0.056 0.953 0.058 0.949 0.051 0.959
CIa

L 0.066 0.917 0.042 0.932 0.046 0.931 0.041 0.946
CIa

U 0.069 0.922 0.047 0.941 0.051 0.938 0.044 0.951

ÓHL 51.677 35.993 41.433 72.672

Table 4: Ljung-Box Statistics of Residuals. ẑ2
t , û2

t and η̂2
t : squared returns successively standardised

by estimated seasonality (ŝt), additive ( ĝt) and GARCH component (v̂t). LBl : Ljung-Box statistic
associated with l lags. 5% (1%) critical values associated with lag lengths 30, 100 and 200: 43.78
(50.89), 124.34 (135.81) and 233.99 (249.45), respectively.

AAPL GOOG

ẑ2
t û2

t η̂2
t ẑ2

t û2
t η̂2

t

LB30 3869.650 2519.534 42.454 988.371 754.868 35.475
LB100 5983.760 3826.552 96.437 1750.869 1344.412 91.134
LB200 7748.654 4914.765 198.721 1940.818 1492.775 157.896

FB MSFT

ẑ2
t û2

t η̂2
t ẑ2

t û2
t η̂2

t

LB30 2701.177 1959.236 28.819 1464.540 1096.649 26.279
LB100 4241.013 3085.410 107.322 2459.489 1929.376 108.898
LB200 4486.168 3255.691 184.377 3308.115 2643.356 190.624

re-sampling approach and shows that relying on standard asymptotic results while ignoring

the implications of Theorem 4 could lead to incorrect inference.

Table 4 shows how much of the variability in squared returns the different components

can explain. For that purpose, Ljung-Box statistics for squared returns standardised by the

estimated seasonality component, additionally the semiparametric component, and, finally,

also the GARCH component are reported. For all stocks except MSFT, deseasonalised squared

returns are more persistent than their raw counterparts, which is a common effect in equity

data (see, e.g., Andersen and Bollerslev, 1997). Standardisation by the semiparametric

component implies a noticeable reduction in the magnitude of the Ljung-Box statistics.

Finally, removing the GARCH component eliminates the persistence with all statistics being

insignificant at the 5% level.
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Finally, we can briefly examine the evolution of the three volatility components. Figure 6

depicts the time series of the estimates of the seasonality component, ŝt , seasonality including

the semiparametric component, ŝt ĝt , as well as the product of all three components, ŝt ĝt v̂t ,

for April. Evidently, the dominating feature is the intraday pattern captured by ŝt . At

the same time, the product ŝt ĝt tracks the latter quite closely. However, the component

v̂t introduces noticeable movements around the volatility level set by the previous two

components. To demonstrate the behaviour on particular days by means of an example,

Figure 7 additionally displays the time series of ĝt as well as the relative depth on levels

1−5 and 16−20 for AAPL in the last trading week of April. On April 27, Apple Inc. made a

scheduled earnings announcement at 5 pm EST, i.e. after the close of trading at NASDAQ.

Figure 7 shows that, on this day, relative depth was concentrated deeper in the book as

opposed to the first five levels, suggesting that rather passive orders were being submitted

prior to the announcement. Due to the estimates of the component functions g1 and g4

being predominantly increasing and decreasing, respectively, as reported in Figure 4, the

aforementioned effect translates into a generally lower level of the component estimate ĝt

on April 27.

3.3 Out-of-Sample Forecasting Study

To assess the usefulness of our model for the prediction of intraday volatility, we conduct a

simple out-of-sample forecasting study. For that purpose, we consider rolling estimation

windows of one month, i.e. 1560 five-minute intervals, and compute one-step ahead volatil-

ity forecasts. A similar study based on rolling windows of two months yields qualitatively

similar results. The latter are available upon request.

The estimation of the model components in the rolling window setting deviates in two

ways from the approach outlined in Section 2.4. That is, when selecting the bandwidths

for the smooth backfitting estimators of the component functions g( j), j = 1, . . . , J , by

minimising the criterion in (18), we use the estimated bandwidths from the previous

window as starting values, which reduces computation time considerably. Second, since we

only need point estimates of the GARCH parameters θ in a forecasting application, we omit

the undersmoothing steps in the above bandwidth selection algorithm.

In our framework, the construction of one-step ahead forecasts of conditional variances

ς2
t+1 := E

�

r2
t+1|Ht

�

, with the filtrationHt defined as in Section 2.1, t = 1, . . . , T−1, consists

of the following steps. First, we predict the seasonality component by selecting the estimate

ŝi, i = 1, . . . , 78, corresponding to the intraday return spell t + 1, ŝt+1|t , t = 1, . . . , T − 1.

Second, we employ the covariate vector at the beginning of the spell t + 1, x t , to compute

the forecast of the semiparametric component according to (6), ĝt+1|t , t = 1, . . . , T − 1,
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Figure 6: Time Series of Volatility Component Estimates (April). Solid black line:
p

ŝt . Solid grey
line:

p

ŝt ĝt . Dashed black line:
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ŝt ĝt v̂t . Volatility reported in percentage points.
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percentage points. Vertical lines indicate end of trading on April 27, 2015.

using the fitted functions ĝ( j), j = 1, . . . , J . Finally, we compute the forecast of the GARCH

component following the dynamics (4) using the parameter estimates θ̂ and the series of

estimated standardised returns
�

û∗t
	

, yielding v̂t+1|t , t = 1, . . . , T − 1. The final forecast of

ς2
t+1 is thus obtained according to ς̂2

t+1|t = ŝt+1|t ĝt+1|t v̂t+1|t , t = 1, . . . , T − 1.

We compare the performance of our model to the following benchmarks. First, we

consider a variant of the intraday component GARCH by Engle and Sokalska (2012), which

is equivalent to our framework, but neglects the semiparametric component, i.e.

rt =
Ç

st v(1)t η
(1)
t , v(1)t = 1−α− β +α

r2
t−1

st−1
+ β v(1)t−1, t = 1, . . . , T, (21)

where the disturbances η(1)t are defined analogously to ηt , t = 1, . . . , T , in Section 2.1. The

seasonality component st and parameters of the GARCH component v(1)t are estimated as

in (5) and (7), respectively, replacing ut by zt , t = 1, . . . , T , in the latter case. One-step

ahead forecasts of these two components are computed analogously to above, implying

the combined forecast ς̂(1),2t+1|t = ŝt+1|t v̂(1)t+1|t , t = 1, . . . , T − 1. Note that, unlike Engle and

Sokalska (2012), we do not additionally include a separate daily volatility component (e.g.

a daily GARCH) as the latter deteriorates the forecasting performance in our application.

As a second benchmark, we implement an intraday version of the trend GARCH model

proposed by Hafner and Linton (2010), which compared to the previous approach, intro-
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duces an additional long-term trend component, i.e.,

rt =
Ç

st τt v(2)t η
(2)
t , τt = τ(t/T ) , (22)

v(2)t = 1−α− β +α
r2

t−1

st−1τt−1
+ β v(2)t−1, t = 1, . . . , T.

To estimate the trend component τt and the GARCH parameters in v(2)t , we consider the

first estimation step of the algorithm proposed in Hafner and Linton (2010) as a direct

implementation of their additional efficient step in the given intraday setting turns out to

be harmful in terms of forecasting precision. Accordingly, τt is estimated by the Nadaraya-

Watson regression

τ̂NW (w) =

¨ T
∑

t=1

K
�

h−1 (w− t/T )
�

«−1 T
∑

t=1

K
�

h−1 (w− t/T )
� r2

t

ŝt
, (23)

where, following Hafner and Linton (2010), we choose the quartic kernel for K and set

the bandwidth as h = 0.05. The GARCH parameters are then estimated analogously to (7),

but with the estimate of the semiparametric component, ĝt , replaced by τ̂t := τ̂NW (t/T ).

Forecasts of the seasonality and GARCH component are computed as before, while for

the trend component, we proceed as in Section 7.1 of Hafner and Linton (2010), setting

τ̂t+1|t = τ̂NW (1) to obtain ς̂(2),2t+1|t = ŝt+1|t τ̂t+1|t v̂(2)t+1|t , t = 1, . . . , T − 1.

Our final benchmark includes the covariates x t−1, t = 1, . . . , T , into the GARCH dynamics

on an additive basis. Hence, the resulting intraday GARCH-X model can be obtained as an

extension of the first benchmark above to

rt =
Ç

st v(3)t η
(3)
t , v(3)t =ω+α

r2
t−1

st−1
+ β v(3)t−1 +δ

T x t−1, t = 1, . . . , T, (24)

where, due to the presence of the covariates, we refrain from imposing the unit-mean

constraint on the GARCH component v(3)t directly. The extended parameter vector of the

latter, θx := (ω,α,β ,δ)T , is estimated as before, i.e. by adapting estimation step (7). The

computation of the forecast v̂(3)t+1|t now additionally requires the covariates at the beginning

of the (t + 1)-th spell, x t , and yields ς̂(3),2t+1|t = ŝt+1|t v̂(3)t+1|t , t = 1, . . . , T − 1.

To evaluate the forecasting performance of our model against the benchmarks, we require

a proxy for the conditional variances ς2
t , t = 1, . . . , T . In order to maximise the efficiency

of the latter, we consider quote data corresponding to our LOB sample, which is updated

whenever the first level is affected by an order event, and obtain the resulting mid-prices.

For each return spell, we then compute a realised variance measure that is robust to the
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market microstructure noise which dilutes the underlying efficient price process and makes

plain realised variance estimates generally biased. On overview of available methods is

provided in Andersen et al. (2008). In our ultra-high frequency setting, we additionally need

to account for the fact that the noise process my exhibit serial dependence (see, e.g., Hansen

and Lunde, 2006). Accordingly, we employ an extension of the popular pre-averaging

method by Jacod et al. (2009) that was proposed by Hautsch and Podolskij (2013) and is

robust to the aforementioned effect, while achieving rate optimality.10 Following Hautsch

and Podolskij (2013), we set the proportionality parameter which determines the length of

the required moving windows to 0.4 and estimate the long-run variance of the noise process

according to the approach they suggest in Section 3 of their paper.11 Finally, based on the

resulting pre-averaging estimates for each return spell, ς̃2
t , t = 1, . . . , T , we compute losses

according to the QLIKE loss function proposed by Patton (2011) as this loss function allows

for a consistent ranking of conditional variance forecasts when an imperfect proxy for the

unobserved conditional variance is used for evaluation purposes.

Table 5 reports the average losses for all four competing models. In addition, results of

two forecast evaluation tests are provided. First, consistent p-values of the test for superior

predictive ability (SPA) proposed by Hansen (2005), which are based on the stationary

bootstrap by Politis and Romano (1994) with 5000 replications. The null hypothesis is that

none of the competitors yields a lower expected loss than the proposed model. Second,

p-values for the proposed model implied by the model confidence set (MCS) approach

proposed by Hansen et al. (2011) employing the same bootstrap setting. A (1−α)-MCS

contains the set of models, which are “best” according to a given criterion, with probability

no less than 1 − α. If a model has MCS p-value p̂, it is contained in all MCS for which

α≤ p̂. For completeness, Table 5 also reports p-values of the pair-wise Diebold and Mariano

(1995) and West (1996) test for equal expected loss of the forecasts based on the proposed

model vs. each competitor. The major finding is that the proposed model is not significantly

outperformed according to the SPA test in all cases but one. In these cases, it yields the

lowest average loss, while being contained even in the finest MCS. Only for MSFT, the null

hypothesis that all competitors imply an equal or higher expected loss can be rejected at

conventional levels, while the model is contained in MCS with confidence level 0.985 and

higher only. However, the proposed model still yields a considerably lower average loss

than the (additive) intraday GARCH-X model. As the latter benchmark is associated with

10The main idea behind the estimator is to obtain weighted moving averages of the returns and, subsequently,
compute a suitably bias-corrected and re-scaled sum of squares of the latter. See Jacod et al. (2009) and
Hautsch and Podolskij (2013) for details.

11Somewhat smaller or larger values of the proportionality parameter yield qualitatively similar forecast
evaluation results.
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Table 5: Out-of-Sample Forecasting Results. Based on rolling estimation windows of one month
(1560 five-minute intervals). Intra-C-GARCH: intraday component GARCH from (21). Intra-T-
GARCH: intraday trend GARCH from (22). Intra-GARCH-X: intraday additive GARCH-X from (24).
L̄: average loss based on QLIKE loss function by Patton (2011) with conditional variances proxied by
pre-averaging estimates following Hautsch and Podolskij (2013). DMW: p-value of two-sided Diebold
and Mariano (1995) and West (1996) test vs. proposed model. SPAc: consistent p-values of test for
superior predictive ability by Hansen (2005) based on stationary bootstrap with 5000 replications.
H0: proposed model is not outperformed by any competitor. MCSMax : model confidence set p-value
of proposed model following Hansen et al. (2011) based on TMax statistic and stationary bootstrap
with 5000 replications.

AAPL GOOG FB MSFT

L̄ DMW L̄ DMW L̄ DMW L̄ DMW

Proposed Model 0.184 0.312 0.184 0.417
Intra-C-GARCH 0.234 0.000 0.357 0.000 0.202 0.024 0.404 0.392
Intra-T-GARCH 0.229 0.000 0.390 0.000 0.225 0.000 0.384 0.002
Intra-GARCH-X 0.247 0.000 0.427 0.000 0.261 0.000 0.541 0.000

SPAc 1.000 1.000 1.000 0.004
MCSMax 1.000 1.000 1.000 0.015

the highest average loss for all stocks, including relative depth covariates into the GARCH

equation in an additive manner appears to be rather disadvantageous in terms of forecasting

performance. In contrast, the above results suggest that augmenting an intraday GARCH

framework multiplicatively by means of a semiparametric component to capture LOB depth

information may improve out-of-sample forecasting precision.

4 Conclusion

In this paper, we propose a semiparametric component model for the conditional volatility

of intraday returns. The model consists of a diurnal factor, accounting for the intraday

seasonality of volatility, a semiparametric additive component, allowing for the impact of

many covariates, e.g., originating from the LOB, as well as unit-GARCH dynamics, which

represent fluctuations of volatility around the level set by the seasonality and semiparametric

component. The estimators of all three components are easy-to-implement in practice.

We provide a comprehensive asymptotic theory for these estimators, including uniform

convergence rates and asymptotic distributions.

In an empirical study, we apply the above methods to blue chips traded on NASDAQ. Our

results underline the practical relevance of a semiparametric model for intraday volatility.

First, we find that the latter may depend on LOB depth in a highly non-linear fashion.
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Second, our model significantly outperforms all relevant benchmarks in an out-of-sample

forecasting exercise.

Possible extensions and applications of the framework we introduced are manifold. For

example, one could study the case of non-stationary covariates entering the model trough

the semiparametric component. Moreover, a test for the functional form of the impact of

particular covariates on subsequent conditional return volatility might be of interest.
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A Proofs

Proof of Theorem 1

The proof is a simplified version of the proof of Theorem 2 in Vogt and Linton (2014) as the

period N is known. Due to st = s(d−1)N+i and st = st+kN , k ∈ N, we can write

ŝt − st = st
1
D

D
∑

k=1

�

z2
(k−1)N+i − 1

�

= st
1
D

D
∑

k=1

q(k−1)N+i . (25)

Since {qt} is strictly stationary and strongly mixing by Assumption 1(g) with the mixing

coefficients decaying quickly enough, we can apply, e.g., the CLT from Theorem 18.5.3 in

Ibragimov and Linnik (1971) to
p

T
D

∑D
k=1 q(k−1)N+i , recalling that T := N D.

�

Proof of Theorem 2

We follow Mammen et al. (1999) in decomposing the estimators of the additive functions,

ĝ( j), into a “stochastic” and “bias” part, i.e. ĝ( j) = ĝ( j),A+ ĝ( j),B. Analogous to (12), ĝ( j),s,

s = A, B, is defined as the solution to

ĝ( j),s
�

x ( j)
�

= ĝ( j),sNW

�

x ( j)
�

− 1−
∑

k 6= j

∫ 1

0

p̂( j,k)
�

x ( j), x (k)
�

p̂( j)
�

x ( j)
� ĝ(k),s

�

x (k)
�

d x (k), (26)

where, similarly to above, ĝ( j),ANW and ĝ( j),BNW are the stochastic and bias part of the univariate

Nadaraya-Watson estimator, respectively, with

ĝ( j),ANW

�

x ( j)
�

=

� T
∑

t=1

Kh

�

x ( j), x ( j)t−1

�

�−1 T
∑

t=1

Kh

�

x ( j), x ( j)t−1

�

εt , (27)

ĝ( j),BNW

�

x ( j)
�

=

� T
∑

t=1

Kh

�

x ( j), x ( j)t−1

�

�−1 T
∑

t=1

Kh

�

x ( j), x ( j)t−1

�

[g(x t−1) (28)

+∆t,T + op

�

T−1
��

,

where εt := gt

�

vt η
2
t − 1

�

and ∆t,T := st−ŝt
st

zt

�

1+ 1
2

st−ŝt
st

�

. ∆t,T + op

�

T−1
�

is the error

ε̃t − εt , caused by the pre-estimation of the seasonality component st , and following from a

simple second order expansion of ŝ−1
t around st .

For the stochastic part ĝ( j),A, we obtain a higher order uniform expansion by applying

Lemma A.1, which is a simple generalisation of Theorem 6.1 from Mammen and Park

(2005). Similarly, a uniform expansion for the bias part ĝ( j),B is given in Lemma A.2 below.
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Combining the latter with (29) completes the proof after some straightforward calculations.

�

The first two lemmas grant uniform expansions for the stochastic and bias part of the

smooth backfitting estimators, respectively.

Lemma A.1. Let Assumptions 1 and 2(b) be fulfilled. Further, assume that h= O
�

T−(1/4+ε)
�

for some ε > 0. Then, for j = 1, . . . , J,

sup
x ( j)∈[0,1]

�

�

�

�

ĝ( j),A
�

x ( j)
�

− ĝ( j),ANW

�

x ( j)
�

− f ( j)T

�

x ( j)
�

�

�

�

�

= op

�

T−1/2
�

, j = 1, . . . , J , (29)

where f ( j)T

�

x ( j)
�

:= 1
T

∑T
t=1 f ( j)t

�

x ( j)
�

εt with f ( j)t , t = 1, . . . , T, being uniformly absolutely

bounded functions satisfying12

�

�

� f ( j)t (x
∗)− f ( j)t (x)

�

�

�≤ C |x∗ − x | , C > 0. (30)

Proof. Lemma A.1 generalises Theorem 6.1 from Mammen and Park (2005), which is

restricted to the i.i.d. case, to our more general setting. We can directly follow their proof

with slight adjustments being necessary to show their claim (6.16). For the latter, we need

to use the uniform convergence results for the uni- and bivariate kernel density estimators

from Lemma A.8. Further, for the proof of their claim (6.22), we can follow the arguments in

the proof of Theorem 2 in Masry (1996) based on using the strong approximation theorem

by Bradley (1983) to approximate a sequence of random variables by independent random

variables.

Lemma A.2. Let Assumptions 1 and 2(b) be fulfilled. Further, assume that h= O
�

T−(1/4+ε)
�

for some ε > 0. Then, for j = 1, . . . , J,

sup
x ( j)∈Ih

�

�

�

�

�

ĝ( j),B
�

x ( j)
�

− g( j)
�

x ( j)
�

+
1
T

T
∑

t=1

g( j)
�

x ( j)t−1

�

�

�

�

�

�

= Op

�

h2
�

, (31)

sup
x ( j)∈[0,1]

�

�

�

�

�

ĝ( j),B
�

x ( j)
�

− g( j)
�

x ( j)
�

+
1
T

T
∑

t=1

g( j)
�

x ( j)t−1

�

�

�

�

�

�

= Op(h) , (32)

where Ih := [2C1h, 1− 2C1h], C1 > 0.

Proof. Since Lemma A.2 directly follows from Theorem 3 in Mammen et al. (1999), we need

to check their conditions (A1)-(A6), (A8) and (A9). The latter can be done analogously to

the proof of Theorem 4 in the above paper, using the uniform convergence results collected

12For the remainder of this appendix, expressions such as C , C1 etc. denote non-stochastic positive constants.
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in Lemma A.8. To verify (A9) in Mammen et al. (1999), their claims (112) and (113)

need to be replaced with Lemma A.3 below, which provides uniform expansions for the

bias part of the univariate Nadaraya-Watson estimator in our setting. The validity of (A9)

given an undersmoothing bandwidth h << T−1/5 further requires the presence of the

Op

�

T−1/2
�

term 1
T

∑T
t=1 g( j)

�

x ( j)t−1

�

in (31). The latter augments the additive constant γT, j

in Theorem 3 in Mammen et al. (1999), which is of order Op

�

h2
�

for x ( j) ∈ Ih and Op(h)

else, respectively. This modification ensures that the accordingly adjusted version of their

claim (114) holds.

The lemma below provides uniform expansions for the bias part of the univariate

Nadaraya-Watson estimator.

Lemma A.3. Let Assumptions 1 and 2(b) be fulfilled. Further, assume that h= O
�

T−(1/4+ε)
�

for some ε > 0. Then,

sup
x ( j)∈Ih

�

�

�

�

ĝ( j),BNW

�

x ( j)
�

− µ̂( j)T

�

x ( j)
�

+ g( j),∗N ,T
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x ( j)
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, (33)
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x ( j)∈[0,1]
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ĝ( j),BNW

�

x ( j)
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x ( j)
�
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�

x ( j)
�

�

�

�

�

= op(h) , (34)

where

g( j),∗N ,T

�

x ( j)
�

:=
1
N

N
∑

i=1

 

1−
N
T

T/N
∑

d=1

z(d−1)N+i

!

(35)

 

2−
N
T

T/N
∑

d=1

z(d−1)N+i

!

g( j),E
�

x ( j)
�

,

with g( j),E
�

x ( j)
�

:= E
�

g(X t−1)

�

�

�

�

X ( j)t−1 = x ( j)
�

and

µ
( j)
T

�

x ( j)
�

:= α(0)T +α
( j)
T

�

x ( j)
�

+
∑

k 6= j

∫ 1

0

α
(k)
T

�

x (k)
� p̂( j,k)

�

x ( j), x (k)
�

p̂( j)
�

x ( j)
� d x (k) (36)

+∆T

∫ 1

0

β(x)
p(x)

p( j)
�

x ( j)
�d x (− j),
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where x (− j) denotes the vector x without element x ( j), ∆T = h2 for x ( j) ∈ Ih and ∆T = h else,

α
(0)
T = 0, while

α
( j)
T

�

x ( j)
�

:= g( j)
�

x ( j)
�

+
g( j)

′�
x ( j)

�∫ 1
0 Kh

�

x ( j), u
� �

u− x ( j)
�

du
∫ 1

0 Kh

�

x ( j), v
�

dv
, (37)

β(x) :=
J
∑

j=1

�

g( j)
′�

x ( j)
� ∂

∂ x ( j)
ln p(x) +

1
2

g( j)
′′�

x ( j)
�

�

∫ 1

0

u2K(u) du. (38)

Proof. We focus on the case x ( j) ∈ Ih. From (28), we obtain

ĝ( j),BNW

�

x ( j)
�

= p̂( j)
�

x ( j)
�−1 1

T

T
∑

t=1

Kh

�

x ( j), x ( j)t−1

�

g(x t−1) (39)

+ p̂( j)
�

x ( j)
�−1 1

T
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Kh

�

x ( j), x ( j)t−1

� st − ŝt

st
zt

+ p̂( j)
�

x ( j)
�−1 1

T
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Kh

�

x ( j), x ( j)t−1

� 1
2
(st − ŝt)

2

s2
t

zt + op

�

h2
�

,

=: ĝ( j),B,0
NW

�

x ( j)
�

+ ĝ( j),B,1
NW

�

x ( j)
�

+ ĝ( j),B,2
NW

�

x ( j)
�

+ op

�

h2
�

,

uniformly in x ( j), where we used that op

�

T−1
�

= op

�

h2
�

for h = O
�

T−(1/4+ε)
�

. For the

second term in (39), we have

ĝ( j),B,1
NW

�

x ( j)
�

=
1
N

N
∑

i=1

si − ŝi

si

1
D

∑D
d=1 Kh

�

x ( j), x ( j)(d−1)N+i−1

�

z(d−1)N+i

p̂( j)
�

x ( j)
� , (40)

=
1
N

N
∑

i=1

si − ŝi

si

�

g( j),E
�

x ( j)
�

+Op

�√

√ ln T
Th

�

+Op

�

h2
�

�

,

=
1
N

N
∑

i=1






1−

1
D

D
∑

d=1

g(d−1)N+i v(d−1)N+i η
2
(d−1)N+i

︸ ︷︷ ︸

z(d−1)N+i






g( j),E

�

x ( j)
�

+ op

�

h2
�

,

uniformly in x ( j), where for the second equality we have used that E
�

Zt

�

�

�

�

X ( j)t−1 = x ( j)
�

=

E
�

E[Zt |X t−1]

�

�

�

�

X ( j)t−1 = x ( j)
�

= E
�

g(X t−1)

�

�

�

�

X ( j)t−1 = x ( j)
�

= g( j),E
�

x ( j)
�

. We can analogously

show that the third term in (39) satisfies

ĝ( j),B,2
NW

�

x ( j)
�

=
1
N

N
∑

i=1

�

1−
1
D

D
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z(d−1)N+i

�2

g( j),E
�

x ( j)
�

+ op

�

h2
�
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uniformly in x ( j). Finally, directly following the proof of claims (112) and (113) in Mammen

et al. (1999) we can show for the first term in (39) that

sup
x ( j)∈Ih

�

�

� ĝ( j),B,0
NW

�

x ( j)
�

− µ̂( j)T

�

x ( j)
�

�

�

�= op

�

h2
�

. (42)

Combining (42), (40) and (41) completes the proof. The proof for the case x ( j) /∈ Ih proceeds

analogously.

Proof of Theorem 3

We decompose the deviation of the quasi-likelihood evaluated at the estimated standardised

returns, LT

�

θ , ĝ, ŜN

�

, from its unobservable true counterpart LT (θ , g,SN ) as

sup
θ∈Θ

�

�LT

�

θ , ĝ, ŜN

�

−LT (θ , g,SN )
�

�≤ sup
θ∈Θ

1
T

T
∑

t=1

�

�ln vt

�

θ , ĝ, ŜN

�

− ln vt(θ , g,SN )
�

� (43)

+ sup
θ∈Θ

1
T

T
∑

t=1

�

�

�

�

�

u2
t ( ĝ, ŝt)

vt

�

θ , ĝ, ŜN

� −
u2

t (g, st)

vt(θ , g,SN )

�

�

�

�

�

,

=: sup
θ∈Θ
|L1(θ )|+ sup

θ∈Θ
|L2(θ )| .

For the first term in (43), we have

sup
θ∈Θ
|L1(θ )| ≤

1
T

T
∑

t=1

sup
θ∈Θ

�

�ln vt

�

θ , ĝ, ŜN

�

− ln vt(θ , g,SN )
�

� , (44)

≤
C
T

T
∑

t=1

sup
θ∈Θ

�

�vt

�

θ , ĝ, ŜN

�

− vt(θ , g,SN )
�

� ,

≤ Op(h) = op(1) ,

with 0 < C < ∞ a real constant and where, for the second inequality, we have used

the mean-value theorem and Assumption 2(b), while the third inequality follows from

Lemma A.12. Further, for the second term in (43), we obtain

sup
θ∈Θ
|L2(θ )| ≤

1
T

T
∑

t=1

u2
t sup
θ∈Θ

�

�
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�
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st gt
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�
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+ sup
θ∈Θ

�

�

�

�

�

gt

ĝt vt(θ , g,SN )
−

st gt

ŝt ĝt vt

�

θ , ĝ, ŜN
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�

�

�

�

�

�

,

= Op(h) +Op(h) +Op

�

T−1/2
�

= Op(h) = op(1) ,

where the third inequality holds due to Lemma A.11 and Assumptions 1(h), 1(i) and 2(b).

We have thus shown that

sup
θ∈Θ

�

�LT

�

θ , ĝ, ŜN

�

−LT (θ , g,SN )
�

�≤ op(1) . (46)

We can now complete the proof using standard results on the strong consistency of the

Gaussian quasi-maximum likelihood estimator of GARCH processes, e.g., Theorem 2.1 in

Francq and Zakoian (2004).

�

Proof of Theorem 4

We begin with the usual Taylor expansion of the first-order condition for a local maximum

of the quasi-likelihood function LT

�

θ , ĝ, ŜN

�

around the true parameter vector θ0, yielding

T1/2
�

θ̂ − θ0

�

= −
�

Ĥ
�

θ̄ , ĝ, ŜN

��−1
T1/2GT

�

θ0, ĝ, ŜN
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, (47)

where GT

�

θ0, ĝ, ŜN

�

:= T−1
∑T

t=1 ∂ / (∂ θ ) lt

�

θ , ĝ, ŜN

�

|θ=θ0
is the score, HT
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∑T

t=1 ∂
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∂ θ∂ θ T
�

lt
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θ , ĝ, ŜN

�

|θ=θ̄ denotes the Hessian, while θ̄ := λθ̂ + (1−λ)θ0

for λ ∈ [0,1]. Since the score in (47) is based on both the pre-estimated seasonality and

semiparametric component, it can be decomposed as

GT

�

θ0, ĝ, ŜN

�

= GT (θ0, g,SN ) +GT (θ0, ĝ,SN )−GT (θ0, g,SN ) (48)

+GT

�

θ0, ĝ, ŜN

�

−GT (θ0, ĝ,SN ) ,
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(G ,g)
T +∆(G ,s)

T ,

where GT (θ0, g,SN ) = −T−1
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t=1 v′t/vt

�

1−η2
�

=: T−1
∑T

t=1 y(0)t denotes the “true” score

with v′t = v′t(θ0, g,SN ) := ∂ / (∂ θ ) vt(θ0, g,SN ) given in Lemma A.9. For the third term

in (48), we obtain by Lemma A.4 below that

∆
(G ,S)
T =

1
T

T
∑

t=1

y(S)t + op

�

T−1/2
�

, (49)
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where y(S)t , t = 1, . . . , T , is defined in Lemma A.4. For the second term in (48), we

consider GT (θ0, ĝ,SN ) as a functional in g evaluated at ĝ and expand it around the true

semiparametric component g, such that

∆
(G ,g)
T =∇ ĝ−g GT (θ0, g,SN ) +RT , (50)

=∇ ĝAGT (θ0, g,SN ) +∇ ĝB−g GT (θ0, g,SN ) +RT ,

where ∇ ĝ−g GT (θ0, g,SN ) := ∂ / (∂ ν) GT (θ0, g + ν ( ĝ − g) ,SN )|ν=0, while for the second

equality we have used the decomposition (26) with ĝs :=
∑J

j=1 ĝ( j),s, s = A, B. Further, the

remainder satisfies RT = Op

�

‖ ĝ − g‖2∞,[0,1]

�

= Op

�

h2
�

= op

�

T−1/2
�

with the last equality

following from the undersmoothing bandwidth h= O
�

T−(1/4+ε)
�

.13 For the first two terms

in (50), Lemmas A.5 and A.6 imply

∇ ĝAGT (θ0, g,SN ) =
1
T

T
∑

t=1

y(g,A)
t,T + op

�

T−1/2
�

, (51)

∇ ĝB−g GT (θ0, g,SN ) =
1
T

T
∑

t=1

y(g,B)
t + op

�

T−1/2
�

, (52)

with y(g,A)
t,T and y(g,B)

t , t = 1, . . . , T , defined in Lemmas A.5 and A.6, respectively. Finally, by

combining results (48)-(52), we can re-write expansion (47) as

T1/2
�

θ̂ − θ0

�

= −
�

HT

�

θ̄ , ĝ, ŜN

��−1
T−1/2

T
∑

t=1

�

y(0)t + y(g,A)
t,T + y(g,B)

t + y(S)t

�

︸ ︷︷ ︸

:=yt,T

(53)

+
�

HT

�

θ̄ , ĝ, ŜN

��−1
T1/2RT + op(1) ,

where

yt,T :=−
v′t
vt

�

1−η2
t

�

−
J
∑

j=1

�

α0

∞
∑

l=0

w2, j,l

�

x ( j)t−1

�

+w3, j

�

x ( j)t−1

�

�

εt (54)

−

¨

α0

∞
∑

l=0

β l
0E

�

u2
t−(l+1)

gt−(l+1)

v′t
v2

t

�

−E
�

v′t
vt gt

�

« J
∑

j=1

g( j)
�

x ( j)t−1

�

−

¨

E
�

v′t
vt

�

−α0

∞
∑

l=0

β l
0E
�

u2
t−(l+1)

v′t
vt

�

«

�

z2
t − 1

�

,

13‖ f ‖∞,[0,1] denotes the sup norm of a function f over the unit interval, i.e. ‖ f ‖∞,[0,1] := supx∈[0,1] | f(x)|.
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with w2, j,l

�

x ( j)t−1

�

and w3, j

�

x ( j)t−1

�

defined in Lemma A.5. We note that, first,HT

�

θ̄ , ĝ, ŜN

�

=

H (θ0, g,SN )+op(1) according to Lemma A.7. Second,
�

T−1/2 yt,T

	

constitutes a triangular

array which is strongly mixing with exponential rate and with centred elements. Hence, we

can apply, e.g., the CLT from Theorem 6 in Philipp (1969) to
∑T

t=1 T−1/2 yt,T . The latter,

together with the Slutzky theorem completes the proof.

�

The three Lemmas below provide expansions for the errors in the score due to the

pre-estimation of the seasonality and semiparametric component. In the latter case, we

analyse the contribution of the stochastic and bias part of the estimator separately.

Lemma A.4. Let Assumptions 1 and 2(b) be fulfilled. Further, assume that h= O
�

T−(1/4+ε)
�

for some ε > 0. Then,

∆
(G ,S)
T =

1
T

T
∑

t=1

¨

α0

∞
∑

l=0

β l
0E
�

u2
t−(l+1)

v′t
vt

�

−E
�

v′t
vt

�

«

�

z2
t − 1

�

+ op

�

T−1/2
�

, (55)

=:
1
T

T
∑

t=1

y(S)t + op

�

T−1/2
�

.

Proof. We decompose ∆(G ,S)
T as

∆
(G ,S)
T = −

1
T

T
∑

t=1

v′t
�

θ0, ĝ, Ŝ
�

− v′t(θ0, ĝ,S )

vt

�

θ0, ĝ, Ŝ
�

�

1−
r2

t

ŝt ĝt vt

�

θ0, ĝ, Ŝ
�

�

(56)

−
1
T

T
∑

t=1

v′t(θ0, ĝ,S )

�

1

vt

�

θ0, ĝ, Ŝ
� −

1
vt(θ0, ĝ,S )

��

1−
r2

t

ŝt ĝt vt

�

θ0, ĝ, Ŝ
�

�

−
1
T

T
∑

t=1

v′t(θ0, ĝ,S )
vt(θ0, ĝ,S )

�

1
st
−

1
ŝt

� r2
t

ĝt vt

�

θ0, ĝ, Ŝ
�

−
1
T

T
∑

t=1

v′t(θ0, ĝ,S )
vt(θ0, ĝ,S )

�

1
vt(θ0, ĝ,S )

−
1

vt

�

θ0, ĝ, Ŝ
�

�

u2
t

ĝt
,

=:∆(G ,S,1)
T +∆(G ,S,2)

T +∆(G ,S,3)
T +∆(G ,S,4)

T .

We begin with the third term, for which we can exploit Lemma A.12, such that

∆
(G ,S,3)
T = −

1
T

T
∑

t=1

v′t +Op(h)

vt +Op(h)
ŝt − st

�

st +Op

�

T−1/2
��

u2
t

�

gt +Op(h)
� �

vt +Op(h)
� , (57)

= −
1
T

T
∑

t=1

v′t
vt
η2

t
ŝt − st

st
+ op

�

T−1/2
�

,
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= −
1
N

N
∑

i=1

ŝi − si

si

1
D

D
∑

d=1

v′(d−1)N+i

v(d−1)N+i
η2
(d−1)N+i + op

�

T−1/2
�

,

= −
1
N

N
∑

i=1

ŝi − si

si
E
�

v′t
vt

�

+ op

�

T−1/2
�

,

= −
1
N

N
∑

i=1

�

1
D

D
∑

d=1

z2
(d−1)N+i − 1

�

E
�

v′t
vt

�

+ op

�

T−1/2
�

,

= −

�

1
T

T
∑

t=1

z2
t − 1

�

E
�

v′t
vt

�

+ op

�

T−1/2
�

.

For the second equality, we have repeatedly used that
�

ζ+Op(aT )
�−1
= ζ−1 + Op(aT )

with ζ = Op(1) and aT = o(1), Assumptions 1(h), 1(i) and 2(b), as well as the fact that

supt=1,...,N |ŝt − st | = Op

�

T−1/2
�

by Theorem 1. To obtain the fourth equality, we again

use the latter result and further apply the CLT from Theorem 18.5.3 in Ibragimov and

Linnik (1971) to 1
D

∑D
d=1

v′(d−1)N+i
v(d−1)N+i

η2
(d−1)N+i, while exploiting that {ηt} is i.i.d. with unit

mean. The remaining three terms in (56) can be handled analogously using the results from

Lemma A.12 and the parametric uniform rate of ŝt , t = 1, . . . , N . Accordingly, we can show

that

∆
(G ,S,1)
T = op

�

T−1/2
�

, (58)

∆
(G ,S,2)
T = op

�

T−1/2
�

, (59)

∆
(G ,S,4)
T =

1
T

T
∑

t=1

α0

∞
∑

l=0

β l
0E
�

u2
t−(l+1)

v′t
vt

�

�

z2
t − 1

�

+ op

�

T−1/2
�

, (60)

which completes the proof.

Lemma A.5. Let Assumptions 1 as well as 2(b) and 2(e) be fulfilled. Further, assume that

h= O
�

T−(1/4+ε)
�

for some ε > 0. Then,

∇ ĝAGT (θ0, g,SN ) = −
1
T

T
∑

t=1

J
∑

j=1

�

α0

∞
∑

l=0

w2, j,l

�

x ( j)t−1

�

(61)

+w3, j

�

x ( j)t−1

��

εt + op

�

T−1/2
�

,

=:
1
T

T
∑

t=1

y(g,A)
t,T + op

�

T−1/2
�

,

where, for j = 1, . . . , J and l = 0, 1, . . .,

w2, j,l

�

x ( j)t−1

�

:= w(1)2, j,l

�

x ( j)t−1

�

+w(2)2, j,l

�

x ( j)t−1

�

, (62)
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w(1)2, j,l

�

x ( j)t−1

�

:= E(t)







Kh

�

x ( j)s−(l+1), x ( j)t−1

� v′s
v2

s

u2
s−(l+1)

gs−(l+1)
∫ 1

0 Kh

�

x ( j)s−(l+1), z
�

dz p( j)
�

x ( j)s−(l+1)

�






, (63)

w(2)2, j,l

�

x ( j)t−1

�

:= E(t)

�

f ( j)t

�

x ( j)s−(l+1)

� v′s
v2

s

u2
s−(l+1)

gs−(l+1)

�

, (64)

and

w3, j

�

x ( j)t−1

�

:= w(1)3, j

�

x ( j)t−1

�

+w(2)3, j

�

x ( j)t−1

�

, (65)

w(1)3, j

�

x ( j)t−1

�

:= E(t)





Kh

�

x ( j)s−1, x ( j)t−1

� v′s
vs gs

∫ 1
0 Kh

�

x ( j)s−1, z
�

dz p( j)
�

x ( j)s−1

�



 , (66)

w(2)3, j

�

x ( j)t−1

�

:= E(t)

�

f ( j)t

�

x ( j)s−1

� v′s
vs gs

�

, (67)

with E(t) denoting the expectation with respect to all random variables except those indexed by

t and the functions f ( j)t defined in Lemma A.1.

Proof. ∇ ĝAGT (θ0, g,SN ) := ∂
∂ ν GT

�

θ0, g + ν ĝA,SN

�

|ν=0 satisfies

∇ ĝAGT (θ0, g,SN ) =
1
T
−

J
∑

j=1

T
∑

t=1

∇ ĝ( j),A v′t(θ0, g,SN )

vt(θ0, g,SN )

�

1−η2
t

�

(68)

−
1
T

J
∑

j=1

T
∑

t=1

∇ ĝ( j),A vt(θ0, g,SN )
v′t(θ0, g,SN )

v2
t (θ0, g,SN )

�

2η2
t − 1

�

−
1
T

J
∑

j=1

T
∑

t=1

v′t(θ0, g,SN )

vt(θ0, g,SN )

η2
t

gt
ĝ( j),A

�

x ( j)t−1

�

,

:=∇ ĝAG (1)T +∇ ĝAG (2)T +∇ ĝAG (3)T .

We begin with the third term. By Lemma A.1, the latter can be decomposed as

G (3)T = −
1
T

J
∑

j=1

T
∑

t=1

v′tη
2
t

vt gt
ĝ( j),ANW

�

x ( j)t−1

�

−
1
T

J
∑

j=1

T
∑

t=1

v′tη
2
t

vt gt
f ( j)T

�

x ( j)t−1

�

+ op

�

T−1/2
�

, (69)

=: G (3,1)
T +G (3,2)

T + op

�

T−1/2
�

.

We initially focus on the first term, which using the definition (27), satisfies

G (3,1)
T = −

J
∑

j=1

1
T

T
∑

s=1

εs
1
T

T
∑

t=1

Kh

�

x ( j)t−1, x ( j)s−1

�

qt

�

1
T

T
∑

s=1

Kh

�

x ( j)t−1, x ( j)s−1

�

�−1

, (70)
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= −
J
∑

j=1

1
T

T
∑

s=1

εs
1
T

T
∑

t=1

Kh

�

x ( j)t−1, x ( j)s−1

� qt

p̃( j)
�

x ( j)t−1

� + op

�

T−1/2
�

,

where qt := v′tη
2
t / (vt gt), while p̃( j)

�

x ( j)
�

is defined in Lemma A.8. For the second equal-

ity, we have exploited that T−1
∑T

s=1 Kh

�

x ( j)t−1, x ( j)s−1

�

= p̃( j)
�

x ( j)t−1

�

+Op(h) by Lemma A.8,

conducted an expansion of the inverse of the latter term as in the proof of Lemma A.4 and

applied standard results on uniform convergence rates from Masry (1996) to bound the

resulting remainder term. As the next step, we show that

G (3,1)
T = −

J
∑

j=1

1
T

T
∑

s=1

εs E(s)



Kh

�

x ( j)t−1, x ( j)s−1

� qt

p̃( j)
�

x ( j)t−1

�



+ op

�

T−1/2
�

, (71)

which requires ∆G (3,1)
T :=

∑J
j=1∆G

(3,1, j)
T = op

�

T−1/2
�

, ∆G (3,1, j)
T :=

�

∆G (3,1, j)
T,α ,∆G (3,1, j)

T,β

�′
,

where

∆G (3,1, j)
T,k :=−

1
T

T
∑

s=1

εs
1
T

T
∑

t=1







Kh

�

x ( j)t−1, x ( j)s−1

� q(k)t

p̃( j)
�

x ( j)t−1

� (72)

−E(s)



Kh

�

x ( j)t−1, x ( j)s−1

� q(k)t

p̃( j)
�

x ( j)t−1

�











,

=: −
1
T

T
∑

s=1

εs
1
T

T
∑

t=1

ρ
(k)
j,t,s,

with q(k)t := v′k,tη
2
t / (vt gt), k = α,β . Thus, we need to prove that E

h

T
�

∆G (3,1, j)
T,k

�2i

= o(1),

k = α,β .

We begin with ∆G (3,1, j)
T,α . ∆G (3,1, j)

T,β can be treated analogously. For this purpose, note

that we can decompose E
h

T
�

∆G (3,1, j)
T,α

�2i

as

E
h

T
�

∆G (3,1, j)
T,α

�2i

=
1
T3

∑

(t,s,l,m)∈Z

E
�

εsεlρ
(α)
j,t,sρ

(α)
j,l,m

�

(73)

+
1
T3

∑

(t,s,l,m)/∈Z

E
�

εsεlρ
(α)
j,t,sρ

(α)
j,l,m

�

,

=: E(α, j)
1 + E(α, j)

2 ,

where Z := {(t, s, l, m)|δ({t, s, l, m})≥ δ0}, with δ(M) := infx ,y∈M ,x 6=y |x − y|, while δ0 =

δ0 (T )> 0. Bounding the second term in (73) is straightforward by applying the Cauchy-
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Schwarz inequality, Lemma A.9, Assumptions 1(b), 1(i) and 2(b), as well as noting that

supu,v∈[0,1] Kh(u, v) = O
�

h−1
�

and E
�

ε4
t

�

<∞. Thus,

E(α, j)
2 ≤ C

T2δ2
0

T3h2
= o(1) , (74)

provided that δ0 = o
�

T1/2h
�

.

The first term in (73) is somewhat more difficult to handle. We decompose it as

E(α, j)
1 =

∑

n∈{t,s,l,m}

1
T3

∑

(t,s,l,m)∈Zn

E
�

εsεlρ
(α)
j,t,sρ

(α)
j,l,m

�

(75)

=:
∑

n∈{t,s,l,m}

E(α, j)
1,n ,

where Zn := {(t, s, l, m)|δn({t, s, l, m})≥ δ0, Zn ∩ Zñ = ;∀ ñ 6= n}, n ∈ {t, s, l, m}, with

δx(M) := infy∈M ,y 6=x |x − y|. We focus on E(α, j)
1,t with the treatment of the remaining

terms in (75) being completely analogous. We can now apply the standard covering argu-

ment from the proof of Theorem 2 in Masry (1996) to the compact support of x ( j)t , [0,1].

Thus, we cover the latter by L(T ) equidistant cubes Ik with centres xk and length L(T )−1,

k = 1, . . . , L(T ). This approach allows us to decompose E(α, j)
1,t according to

E(α, j)
1,t =

1
T3

∑

(t,s,l,m)∈Zn

L(T )
∑

k=1

E



εsεlρ
(α)
j,l,m







I¦x ( j)t−1∈Ik

©Kh

�

xk, x ( j)s−1

� q(α)t

p̃( j)
�

x ( j)t−1

� (76)

−E(s)



I¦x ( j)t−1∈Ik

©Kh

�

xk, x ( j)s−1

� q(α)t

p̃( j)
�

x ( j)t−1

�















+
1
T3

∑

(t,s,l,m)∈Zn

L(T )
∑

k=1

E



εsεlρ
(α)
j,l,m







I¦x ( j)t−1∈Ik

©

�

Kh

�

x ( j)t−1, x ( j)s−1

�

− Kh

�

xk, x ( j)s−1

�� q(α)t

p̃( j)
�

x ( j)t−1

�

−E(s)



I¦x ( j)t−1∈Ik

©

�

Kh

�

x ( j)t−1, x ( j)s−1

�

− Kh

�

xk, x ( j)s−1

�� q(α)t

p̃( j)
�

x ( j)t−1

�













 ,

=: E(α, j)
1,t,1 + E(α, j)

1,t,2 .

For the second term, we note that, due to the Lipschitz continuity of K(u) granted by As-

sumption 1(a), we have
�

�

�Kh

�

x ( j)t−1, x ( j)s−1

�

− Kh

�

xk, x ( j)s−1

�

�

�

�≤ C
�

�

�x ( j)t−1 − xk

�

�

�h−2 ≤ C L(T )−1h−2
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if x ( j)t−1 ∈ Ik , t, s = 1, . . . , T , k = 1, . . . , L(T ). This yields

�

�

�E(α, j)
1,t,2

�

�

�≤
C

T3h2 L(T )

∑

(t,s,l,m)∈Zn

E



|εs| |εl |
�

�

�ρ
(α)
j,l,m

�

�

�







�

�

�

�

�

�

q(α)t

p̃( j)
�

x ( j)t−1

�

�

�

�

�

�

�

(77)

+ E





�

�

�

�

�

�

q(α)t

p̃( j)
�

x ( j)t−1

�

�

�

�

�

�

�













 ,

≤ C
T

h3 L(T )
,

where, for the second inequality, we have applied Assumptions 1(b), 1(i) and 2(b), as

well as Lemma A.9 and the fact that supu,v∈[0,1] Kh(u, v) = h−1. Thus, E(α, j)
1,t,2 = o(1) if

L(T )−1 = o
�

T−1h3
�

, e.g., L(T ) = O
�

Th−3 ln T
�

. Likewise, the first term in (76) satisfies

E(α, j)
1,t,1 = T L(T )Cov



Kh

�

xk, x ( j)s−1

�

εsεlρ
(α)
j,l,m, I¦x ( j)t−1∈Ik

©

q(α)t

p̃( j)
�

x ( j)t−1

�



 , (78)

≤ C T L(T ) dδ0(1−κ−1−γ−1) E
h

Kh

�

xk, x ( j)s−1

�κ
|εs|

κ |εl |
κ
�

�

�ρ
(α)
j,l,m

�

�

�

κi1/κ

×E



I¦x ( j)t−1∈Ik

©

�

�

�q(α)t

�

�

�

γ

�

p̃( j)
�

x ( j)t−1

��γ





1/γ

,

≤ C
T L(T )

h2
dδ0(1−κ−1−γ−1) E[|εs|

κ |εl |
κ]1/κ E

h
�

�

�v′α,t

�

�

�

γi1/γ
,

with 0< d < 1 and 0< κ−1 + γ−1 < 1. For the first inequality, we have applied Davydov’s

Lemma (see, e.g., Hall and Heyde, 1980, Corollary A2), while the second one follows from

arguments analogous to those used in (77).

In order to bound the two expectations in (78) , we note that, by Lemma A.9 and the

Minkowski inequality,

E
h
�

�

�v′α,t

�

�

�

γi1/γ
≤ C1 + C2E

�

|ut |
2γ�1/γ

. (79)

Likewise, the Cauchy-Schwarz inequality and the stationarity of {εt} implyE[|εs|
κ |εl |

κ]1/κ ≤

E
�

|εt |
2κ�1/κ

, while by the Hölder inequality,

E
�

|εt |
2κ�1/κ ≤ E

�
�

�u2
t − 1

�

�

2κζ�1/(κζ)
E
�

g2κτ
t

�1/(κτ)
, (80)

≤
�

1+E
�

|ut |
4κζ�1/(κζ)

�

E
�

g2κτ
t

�1/(κτ)
,
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with ζ−1 + τ−1 = 1 and where the second inequality follows from another application

of the Minkowski inequality. For the two above moments to exist and be finite, we thus

need that E[|ut |
ϕ] <∞, where ϕ := max(2γ, 4κζ). Then, (80) implies E

�

|εt |
2κ� <∞

as E
�

g2κτ
t

�

<∞ for finite κ and τ by Assumptions 1(c) and 1(b). Accordingly, we can

choose ζ as a rational number arbitrarily close to (but strictly greater than) one, while

τ = (1− ζ−1)−1. Then, setting κ = 3/2+ ε1 and γ = 3+ ε2, ε1,ε2 > 0, the above condition

requires E
�

|ut |
6+ε�<∞, which is granted by Assumption 2(e). Using these results in (78),

as well as choosing δ0 from (73) as δ0 = O(ln T ), yields by simple algebra

E(α, j)
1,t,1 ≤ C

T L(T )
h2

dC ′ ln T(1−κ−1−γ−1), (81)

= C
T L(T )

h2
T−C ′′(1−κ−1−γ−1) =: C

T L(T )
h2

T−C ′′′ ,

where C ′′ > 0. Hence, by setting L(T) = O
�

Th−3 ln T
�

, we obtain E(α, j)
1,t,1 =

C T2−C ′′′h−5 ln T = o(1) as we can simply choose C ′′, and thus C ′′′, to be sufficiently large.

Recalling (77), we thus have shown that E(α, j)
1,t = o(1) and, consequently, E(α, j)

1 = o(1),

which together with (74) and completely analogous calculations for ∆G (3,1, j)
T,β proves (71).

In a similar (and slightly simplified) fashion, we can show that the second term in (69)

satisfies

G (3,2)
T = −

J
∑

j=1

1
T

T
∑

s=1

εs E(s)
�

f ( j)s

�

x ( j)t−1

�

qt

�

+ op

�

T−1/2
�

. (82)

Finally, by application of Lemma A.10 and following the above proof strategy, we can show

for the remaining two terms in (68) that

G (1)T = op

�

T−1/2
�

, (83)

G (2)T = −
α0

T

J
∑

j=1

T
∑

s=1

∞
∑

l=0

εs E(s)







Kh

�

x ( j)t−(l+1), x ( j)s−1

� v′t
v2

t

u2
t−(l+1)

gt−(l+1)
∫ 1

0 Kh

�

x ( j)t−(l+1), z
�

dz p( j)
�

x ( j)t−(l+1)

� (84)

+ f ( j)s

�

x ( j)t−(l+1)

� v′t
v2

t

u2
t−(l+1)

gt−(l+1)

�

+ op

�

T−1/2
�

,

where, for (84) to hold, we need analogously to the arguments in (78)-(80) thatE
�

|ut |
8+ε�<

∞, ε > 0. The latter is guaranteed by Assumption 2(e), which completes the proof.
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Lemma A.6. Let Assumptions 1 as well as 2(b) and 2(e) be fulfilled. Further, assume that

h= O
�

T−(1/4+ε)
�

for some ε > 0. Then,

∇ ĝB−B GT (θ0, g,SN ) = −
1
T

T
∑

t=1

¨

α0

∞
∑

l=0

β l
0E

�

u2
t−(l+1)

gt−(l+1)

v′t
v2

t

�

(85)

−E
�

v′t
vt gt

�� J
∑

j=1

g( j)
�

x ( j)t−1

�

+ op

�

T−1/2
�

,

=:
1
T

T
∑

t=1

y(g,B)
t + op

�

T−1/2
�

.

Proof. ∇ ĝB−B GT (θ0, g,SN ) := ∂
∂ ν GT

�

θ0, g + ν
�

ĝB − g
�

,SN

�

|ν=0 satisfies, analogous to

the proof of Lemma A.5,

∇ ĝB−B GT (θ0, g,SN ) =
1
T
−

J
∑

j=1

T
∑

t=1

∇ ĝ( j),B−g( j) v′t
vt

�

1−η2
t

�

(86)

−
1
T

J
∑

j=1

T
∑

t=1

∇ ĝ( j),B−g( j) vt
v′t
v2

t

�

2η2
t − 1

�

−
1
T

J
∑

j=1

T
∑

t=1

v′t
vt

η2
t

gt

�

ĝ( j),B
�

x ( j)t−1

�

− g( j)
�

x ( j)t−1

��

,

:=∇ ĝB−g G
(1)
T +∇ ĝB−g G

(2)
T +∇ ĝB−g G

(3)
T .

Again, we first cover the third term. The latter can be decomposed as

∇ ĝB−g G
(3)
T = −

1
T

J
∑

j=1

T
∑

t=1

v′t
vt

η2
t

gt

�

ĝ( j),B
�

x ( j)t−1

�

− g( j)
�

x ( j)t−1

�

+ g( j)
�

(87)

+
1
T

J
∑

j=1

T
∑

t=1

v′t
vt

η2
t

gt
g( j),

=:∇ ĝB−g G
(3,1)
T +∇ ĝB−g G

(3,2)
T ,

where g( j) := T−1
∑T

t=1 g( j)
�

x ( j)t−1

�

, j = 1, . . . , J . For ∇ ĝB−g G
(3,1)
T , we distinguish between

situations with x ( j)t−1, t = 1, . . . , T , j = 1, . . . , J , being in the interior and in the boundary

region of the support, respectively, i.e.,

∇ ĝB−g G
(3,1)
T ≤

J
∑

j=1

sup
x ( j)∈Ih

�

�

� ĝ( j),B
�

x ( j)
�

− g( j)
�

x ( j)
�

+ g( j)
�

�

�

1
T

T
∑

t=1





v′t






vt

η2
t

gt
I¦x ( j)t−1∈Ih

© (88)
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+
J
∑

j=1

sup
x ( j)∈[0,1]

�

�

� ĝ( j),B
�

x ( j)
�

− g( j)
�

x ( j)
�

+ g( j)
�

�

�

1
T

T
∑

t=1





v′t






vt

η2
t

gt
I¦x ( j)t−1 /∈Ih

©,

≤ Op

�

h2
�

+Op(h)

¨

E

�




v′t






vt

η2
t

gt
I¦x ( j)t−1 /∈Ih

©

�

+Op

�

T−1/2
�

«

,

≤ Op(h) E
�

E
�




v′t




η2
t |x

( j)
t−1

�

I¦x ( j)t−1 /∈Ih

©

�

+ op

�

T−1/2
�

,

≤ Op(h) E
�

I¦x ( j)t−1 /∈Ih

©

�

+ op

�

T−1/2
�

,

≤ Op(h)

∫

x ( j) /∈Ih

p( j)
�

x ( j)
�

d x ( j) + op

�

T−1/2
�

,

≤ Op

�

h2
�

+ op

�

T−1/2
�

= op

�

T−1/2
�

,

where for the second inequality, we have applied Lemma A.2, while the third inequality

follows from the undersmoothing condition, the law of iterated expectations, as well as

Assumption 1(i) and 2(b).14 Further, for the fourth inequality, we note that, by another

application of the law of iterated expectations,

E
�




v′t




η2
t |x

( j)
t−1

�

= E
�

E
�




v′t




|H (x)
t−1

�

|x ( j)t−1

�

≤ E
�

C1 + C2E
�

vt |H
(x)
t−1

�

|x ( j)t−1

�

≤ O(1) ,

by Lemma A.9 and E
�

vt |H
(x)
t−1

�

= 1 with H (x)
t being the filtration generated by

{x t , . . . , x−∞}. Finally, the boundedness of the density p( j) according to Assumption 1(b)

yields the last inequality in (88). We can now tackle the second term in (87), which satisfies

∇ ĝB−g G
(3,2)
T =

J
∑

j=1

g( j)
�

E
�

v′t
gt vt

�

+Op

�

T−1/2
�

�

, (89)

= E
�

v′t
gt vt

� J
∑

j=1

g( j) + op

�

T−1/2
�

,

by Theorem 18.5.3 in Ibragimov and Linnik (1971), the fact that {ηt} is i.i.d. with unit mean

and g( j) = Op

�

T−1/2
�

= op(1). The remaining two terms in (86) can be treated analogously

after applying Lemma A.10. This yields

∇ ĝB−g G
(1)
T = op

�

T−1/2
�

, (90)

∇ ĝB−g G
(2)
T = −α0

∞
∑

l=0

β l
0E

�

u2
t−(l+1)

gt−(l+1)

v′t
v2

t

� J
∑

j=1

g( j) + op

�

T−1/2
�

, (91)

14For the remainder of this appendix, ‖·‖ denotes the Euclidean norm.
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where, for the proof of (91), we additionally need that E
�




v′t




u2
t−1−k|x

( j)
t−2−k

�

<∞. By

Lemma A.9 and repeated application of the Cauchy-Schwarz inequality, it is straightforward

to show that a necessary and sufficient condition for the latter is that E
�

u4
t |H

(x , j)
�

<∞,

j = 1, . . . , J , whereH (x , j) is the sigma algebra generated by
¦

x ( j)∞, . . . , x ( j)−∞
©

. This condition

is fulfilled by means of Assumption 2(e), which completes the proof.

The final Lemma in this section shows the consistency of the sample Hessian given

pre-estimated seasonality and semiparametric component.

Lemma A.7. Let Assumptions 1 and 2(b) be fulfilled. Further, assume that h= O
�

T−(1/4+ε)
�

for some ε > 0. Then,

HT

�

θ̄ , ĝ, ŜN

�

=H (θ0, g,SN ) + op(1) , (92)

where HT

�

θ̄ , ĝ, ŜN

�

:= T−1
∑T

t=1 ∂
2/
�

∂ θ∂ θ T
�

lt

�

θ , ĝ, ŜN

�

|θ=θ̄ , H (θ0, g,SN ) :=

E
�

∂ 2/
�

∂ θ∂ θ T
�

lt(θ , g,SN )|θ=θ0

�

and θ̄ := λθ̂ + (1−λ)θ0 for λ ∈ [0, 1].

Proof. We can bound the estimation error of the Hessian by noting that





HT

�

θ̄ , ĝ, ŜN

�

−H (θ0, g,SN )




≤ sup
θ∈Θ





HT

�

θ , ĝ, ŜN

�

−HT (θ , ĝ,SN )




 (93)

+ sup
θ∈Θ
‖HT (θ , ĝ,SN )−HT (θ , g,SN )‖

+




HT

�

θ̄ , g,SN

�

−H (θ0, g,SN )




 ,

≤ op(1) + op(1) + op(1) = op(1) ,

where, for the second inequality, the bounds for the first and second term can be straight-

forwardly derived using Theorem 1 and 2, respectively, while the result for the third term

follows, e.g., from part (vi) of the proof of Theorem 2.2 in Francq and Zakoian (2004).

Basic Lemmas

The first lemma summarises important results on uniform convergence rates of uni- and

bivariate kernel density estimators as well as the stochastic part of the univariate Nadaraya-

Watson estimator. These are based on Masry (1996) and Mammen et al. (1999).

Lemma A.8. Let Assumptions 1 and 2(b) be fulfilled. Further, assume that h= O
�

T−(1/4+ε)
�

for some ε > 0. Then, for j, k = 1, . . . , J, j 6= k,

sup
x ( j)∈Ih,x (k)∈Ih

�

�p̂( j,k)
�

x ( j), x (k)
�

− p( j,k)
�

x ( j), x (k)
��

�= Op

�√

√ ln T
Th2

�

+Op

�

h2
�

, (94)
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sup
x ( j)∈Ih

�

�p̂( j)
�

x ( j)
�

− p( j)
�

x ( j)
��

�= Op

�√

√ ln T
Th

�

+Op

�

h2
�

, (95)

sup
x ( j)∈[0,1],x (k)∈[0,1]

�

�p̂( j,k)
�

x ( j), x (k)
�

− p̃( j,k)
�

x ( j), x (k)
��

�= Op

�√

√ ln T
Th2

�

+Op(h) , (96)

sup
x ( j)∈[0,1]

�

�p̂( j)
�

x ( j)
�

− p̃( j)
�

x ( j)
��

�= Op

�√

√ ln T
Th

�

+Op(h) , (97)

sup
x ( j)∈[0,1]

�

�

� ĝ( j),ANW

�

x ( j)
�

�

�

�= Op

�√

√ ln T
Th

�

, (98)

where p̃( j,k)
�

x ( j), x (k)
�

:= p( j,k)
�

x ( j), x (k)
�

�

∫ 1
0 Kh

�

x ( j), v
�

dv
��

∫ 1
0 Kh

�

x (k), v
�

dv
�

and

p̃( j)
�

x ( j)
�

:= p( j)
�

x ( j)
�∫ 1

0 Kh

�

x ( j), v
�

dv.

The next lemma provides the gradient of observations of the unit-GARCH dynamics (4).

Lemma A.9. For t = 1, . . . , T,

v′t(θ , g,SN ) :=
∂

∂ θ
vt(θ , g,SN ) =

�

v′α,t(θ , g,SN ) , v′β ,t(θ , g,SN )
�T

, (99)

v′α,t(θ , g,SN ) := −1+
r2

t−1

st−1 gt−1
+ β v′α,t−1(θ , g,SN ) , (100)

= −
t−1
∑

k=0

β k +
t−1
∑

k=0

β k
r2

t−1−k

st−1−k gt−1−k
,

v′β ,t(θ , g,SN ) := −1+ vt−1(θ , g,SN ) + β v′β ,t−1(θ , g,SN ) , (101)

= −
t−1
∑

k=0

β k + (1−α− β)
t−1
∑

k=0

t−2−k
∑

l=0

β k+l

+α
t−1
∑

k=0

t−2−k
∑

l=0

β k+l
r2

t−2−(k+l)

st−2−(k+l)gt−2−(k+l)
+

t−1
∑

k=0

β t−1v0.

Proof. (100) is trivial. For (101), use that vt(θ , g,SN ) = (1−α− β)
∑t−1

k=0 β
k +

α
∑t−1

k=0 β
k r2

t−1−k
st−1−k gt−1−k

+ β t v0.

The lemma below provides directional derivatives of observations of the unit-GARCH

dynamics (4) and their gradient with respect to the semiparametric component g.

Lemma A.10. For t = 1, . . . , T,

∇∆g vt(θ , g,SN ) :=
∂

∂ ν
vt(θ0, g + ν∆g,SN )|ν=0, (102)

= −α
r2

t−1

st−1 gt−1

∆gt−1

gt−1
+∇∆g vt−1(θ0, g,SN ) ,
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= −α
t−1
∑

k=0

β k
r2

t−1−k

st−1−k gt−1−k

∆gt−1−k

gt−1−k
,

∇∆g v′t(θ , g,SN ) :=
∂

∂ ν
v′t(θ0, g + ν∆g,SN )|ν=0, (103)

=
�

∇∆g v′α,t(θ , g,SN ) ,∇∆g v′β ,t(θ , g,SN )
�T

,

∇∆g v′α,t(θ , g,SN ) = −
r2

t−1

st−1 gt−1

∆gt−1

gt−1
+∇∆g v′α,t−1(θ0, g,SN ) , (104)

= −
t−1
∑

k=0

β k
r2

t−1−k

st−1−k gt−1−k

∆gt−1−k

gt−1−k
,

∇∆g v′β ,t(θ , g,SN ) :=∇∆g vt−1(θ0, g,SN ) + β∇∆g v′β ,t−1(θ , g,SN ) , (105)

= α
t−1
∑

k=0

t−2−k
∑

l=0

β k+l
r2

t−2−(k+l)

st−2−(k+l)gt−2−(k+l)

∆gt−2−(k+l)

gt−2−(k+l)
,

Proof. (102) is trivial, while (104) and (105) directly follow from Lemma A.9.

The following lemma establishes uniform convergence rates for ratios involving the

component estimators.

Lemma A.11. Let Assumptions 1 and 2(b) be fulfilled. Further, assume that h = O
�

T−(1/4+ε)
�

for some ε > 0. Then,

sup
t=1,...,N

�

�

�

�

ŝt − st

ŝt

�

�

�

�

= Op

�

T−1/2
�

, (106)

sup
x∈[0,1]

�

�

�

�

ĝ(x)− g(x)
ĝ(x)

�

�

�

�

= Op(h) , (107)

sup
θ∈Θ

�

�

�

�

�

vt

�

θ , ĝ, ŜN

�

− vt(θ , g,SN )

vt

�

θ , ĝ, ŜN

�

�

�

�

�

�

= Op(h) . (108)

Proof. Use Theorems 1 and 2, Lemma A.12, as well as the fact that st , g(x) and vt are

bounded from below uniformly in t = 1, . . . , N , x ∈ [0, 1] and θ ∈ Θ according to Assump-

tion 1(h), 1(i) and 2(b), respectively.

The final lemma provides uniform rates for the observations of the unit GARCH process

and its gradient based on pre-estimated seasonality and semiparametric component.

Lemma A.12. Let Assumptions 1 and 2(b) be fulfilled. Further, assume that h = O
�

T−(1/4+ε)
�

for some ε > 0. Then, for t = 1, . . . , T,

sup
θ∈Θ

�

�vt

�

θ , ĝ, ŜN

�

− vt(θ , g,SN )
�

�= Op(h) , (109)
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sup
θ∈Θ

�

�vt

�

θ , ĝ, ŜN

�

− vt(θ , ĝ,SN )
�

�= Op

�

T−1/2
�

, (110)

sup
θ∈Θ

�

�vt

�

θ , ĝ, ŜN

�

− vt

�

θ , g, ŜN

��

�= Op(h) , (111)

sup
θ∈Θ





v′t
�

θ , ĝ, ŜN

�

− v′t(θ , ĝ,SN )




= Op

�

T−1/2
�

, (112)

sup
θ∈Θ





v′t(θ , ĝ,SN )− v′t(θ , g,SN )




= Op(h) . (113)

Proof. For (109), we use

vt(θ , g,SN ) = β
t v0 + (1−α− β)

t−1
∑

k=0

β k +α
t−1
∑

k=0

β ku2
t−1−k (g, st−1−k) , (114)

to obtain

�

�vt

�

θ , ĝ, ŜN

�

− vt(θ , g,SN )
�

�≤ α
∞
∑

k=0

β ku2
t−1−k (g, st−1−k)

�

�

�

�

1−
st−1−k gt−1−k

ŝt−1−k ĝt−1−k

�

�

�

�

, (115)

≤ α
∞
∑

k=0

β ku2
t−1−k

�

sup
x∈[0,1]

�

�

�

�

1−
g(x t−1−k)
ĝ(x t−1−k)

�

�

�

�

+ sup
x∈[0,1]

�

�

�

�

g(x t−1−k)
ĝ(x t−1−k)

�

�

�

�

sup
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�

�
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1−
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�

�

�

�

,

= α
∞
∑

k=0

β ku2
t−1−k

�

Op(h) +Op

�

T−1/2
��

,

= Op(1)Op(h) = Op(h) ,

where, for the third inequality, we have used Lemma A.11 and Assumption 1(i), while

for the last inequality, we have exploited that E
�∑∞

k=0 β
ku2

t−1−k

�

= E[u2
t ]/ (1− β) <∞,

such that
∑∞

k=0 β
ku2

t−1−k = Op(1) by the Markov inequality. To prove (110) and (111), we

proceed analogously, additionally using Assumption 1(h) in the latter case. For the proof

of (112), note that by Lemma A.9

�

�

�v′α,t

�

θ , ĝ, ŜN

�

− v′α,t(θ , ĝ,SN )
�

�

�≤
∞
∑

k=0

β k
u2

t−1−k

ĝt−1−k

�

�

�

�

st−1−k − ŝt−1−k

ŝt−1−k

�

�

�

�

, (116)

= Op

�

T−1/2
�

,

and

�

�

�v′β ,t

�

θ , ĝ, ŜN

�

− v′β ,t(θ , ĝ,SN )
�

�

�≤ α
t−1
∑

k=0

t−2−k
∑

l=0

β k+l
u2

t−2−(k+l)

ĝt−2−(k+l)
(117)
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×
�

�

�

�

st−2−(k+l) − ŝt−2−(k+l)

ŝt−2−(k+l)

�

�

�

�

,

= Op

�

T−1/2
�

,

using Lemma A.11 and Assumption 1(i). Finally, (113) can be proven analogously, exploiting

Assumption 1(h).
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B Additional Tables

Table 6: Ljung-Box Statistics. LBl : Ljung-Box statistic associated with l lags. 5% (1%) critical values
associated with lag lengths 30, 100 and 200: 43.78 (50.89), 124.34 (135.81) and 233.99 (249.45),
respectively. DEP1−5 and DEP16−20: average relative depth on levels 1 to 5 and 16 to 20, respectively.
Results for (average) relative depth on levels 6 to 10 and 11 to 15 omitted due to space constraints,
but available upon request.

AAPL GOOG

LRET2 DEP1−5 DEP16−20 LRET2 DEP1−5 DEP16−20

LB30 1913.739 4091.917 1722.043 496.781 243.527 943.531
LB100 3095.095 10093.756 3176.169 570.901 310.212 1815.279
LB200 4040.890 16085.051 4125.625 706.499 480.058 2560.643

FB MSFT

LRET2 DEP1−5 DEP16−20 LRET2 DEP1−5 DEP16−20

LB30 2606.008 616.182 1342.833 15462.293 4636.652 863.461
LB100 3217.624 1051.275 2095.142 18160.858 5393.931 1575.020
LB200 3711.725 1540.223 2842.626 23848.078 5667.031 2241.236

Table 7: Results of Augmented Dickey-Fuller Unit-Root-Test for Relative Depths. Lag length selected
by SIC.

RDEPTH(1−5) RDEPTH(6−10) RDEPTH(11−15) RDEPTH(16−20)

DF PDF DF PDF DF PDF DF PDF

AAPL -14.150 0.000 -13.131 0.000 -16.364 0.000 -17.385 0.000
GOOG -16.046 0.000 -17.490 0.000 -17.893 0.000 -17.517 0.000
FB -14.907 0.000 -17.859 0.000 -18.701 0.000 -18.477 0.000
MSFT -13.840 0.000 -13.924 0.000 -16.588 0.000 -15.061 0.000
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